The Cayley-Hamilton Theorem

Terminology. A linear transformation T from a vector space V to itself (i.e. $T: V \to V$) is called a **linear** operator on V.

Theorem. (Cayley-Hamilton) Let $T: V \to V$ be a linear operator on a finite dimensional vector space V. Let p be the characteristic polynomial of T. Then $p(T) = 0$.

Proof. Choose a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ for V. I will show that $p(T) = 0$ by showing that $p(T)v_i = 0$ for all i.

Let $A=[T]_{\mathcal{B},\mathcal{B}}$. Then

$$
Tv_i=\sum_j A_{ji}v_j, \qquad i=1,\ldots,n.
$$

Now

$$
Tv_i = \sum_j \delta ijTv_j
$$
, so $\sum_j (A_{ji}I - \delta ijT)v_j = 0$.

To save writing, let

$$
B_{ij} = A_{ji}I - \delta ijT.
$$

Observe that the matrix $B = (B_{ij})$ has linear operators as its entries. For example, for $n = 2$,

$$
\begin{bmatrix} A_{11}I - T & A_{21}I \\ A_{12}I & A_{22}I - T \end{bmatrix}.
$$

In fact, B is just the transpose of $A - \lambda I$ with $\lambda = T$. Hence, $|B| = p(T)$. Next, I will show that $|B|v_k = 0$ for all k. Observe that

$$
\sum_j B_{ij} v_j = 0.
$$

Hence,

$$
0 = (adj B)_{ki} \sum_j B_{ij} v_j = \sum_j (adj B)_{ki} B_{ij} v_j.
$$

This equation holds for all i and all k, so I'll still get 0 if I sum on i. So I'll sum on i, then interchange the order of summation:

$$
0 = \sum_{i} \sum_{j} (adj B)_{ki} B_{ij} v_j,
$$

$$
0 = \sum_{j} \left(\sum_{i} (adj B)_{ki} B_{ij} \right) v_j.
$$

Now $\sum_i (\text{adj } B)_{ki} B_{ij}$ is the (k, j) -th entry of $(\text{adj } B \cdot B) = |B|I$. Hence,

$$
0 = \sum_{j} |B|\delta k j v_j = |B| v_k.
$$

Since $p(T) = |B|$ kills v_k for all $k, p(T) = 0$. \Box

Definition. If A is an $n \times n$ matrix, the **minimal polynomial** of A is the polynomial $m(x)$ of smallest degree with leading coefficient 1 such that $m(A) = 0$. If T is a linear operator on a vector space V, the minimal polynomial of T is the minimal polynomial of any matrix for T .

It's implicit in the last sentence that it doesn't matter which matrix for T you use. Can you prove it?

Corollary. The minimal polynomial divides the characteristic polynomial. \Box

Example. Consider the matrix

$$
A = \begin{bmatrix} 9 & 1 & 3 \\ -3 & 1 & -1 \\ -16 & -2 & -5 \end{bmatrix} \in M(3, \mathbb{R}).
$$

The characteristic polynomial is $4 - 8\lambda + 5\lambda^2 - \lambda^3$; the eigenvalues are $\lambda = 2$ (double) and $\lambda = 1$.

Since A is evidently neither 0 nor a multiple of the identity, its minimal polynomial must be a quadratic or cubic factor of the characteristic polynomial.

Note that

$$
(A-2I)(A-I) = \begin{bmatrix} 5 & 1 & 2 \\ -5 & -1 & -2 \\ -10 & -2 & -4 \end{bmatrix} \text{ and } (A-2I)^2 = \begin{bmatrix} -2 & 0 & -1 \\ -2 & 0 & -1 \\ 6 & 0 & 3 \end{bmatrix}.
$$

Hence, the minimal polynomial is the characteristic polynomial $4 - 8\lambda + 5\lambda^2 - \lambda^3$.

Here is a more precise version of the previous corollary.

Proposition. Let $T: V \to V$ be a linear operator on a finite dimensional vector space. The minimal and characteristic polynomials of T have the same roots, up to multiplicity.

Proof. Let $m(x)$ denote the minimal polynomial and $p(x)$ the characteristic polynomial. Cayley-Hamilton says that $m \mid p$, so a root of m is a root of p.

Conversely, let λ be a root of p — i.e. an eigenvalue. Let v be an eigenvector corresponding to λ , so $Tv = \lambda v$. It follows that if $f(x)$ is an arbitrary polynomial over F, then $f(T)v = f(\lambda)v$. In particular, this is true of the minimal polynomial:

$$
0 = m(T)v = m(\lambda)v.
$$

Since $v \neq 0$, $m(\lambda) = 0$. Therefore, every root of p is a root of m, and the roots of m and p coincide. \Box

Example. Consider the matrix

$$
A = \begin{bmatrix} 9 & 1 & 3 \\ -3 & 1 & -1 \\ -16 & -2 & -5 \end{bmatrix} \in M(3, \mathbb{R}).
$$

The characteristic polynomial is $4 - 8\lambda + 5\lambda^2 - \lambda^3 = (\lambda - 2)^2(\lambda - 1)$. In view of the Corollary, I did more work than necessary in determining the minimal polynomial the first time. The only possibilities for the minimal polynomial are $(\lambda - 2)^2(\lambda - 1)$ and $(\lambda - 2)(\lambda - 1)$.

Computation showed that $(\lambda - 2)(\lambda - 1)$ doesn't kill A, so the minimal polynomial is $(\lambda - 2)^2(\lambda - 1)$. \Box