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Infinite Unions and Intersections

The set constructions I've considered so far — things like AU B, C, D N E — have involved finite
numbers of sets. It’s often necessary to work with infinite collections of sets, and to do this, you need a way
of naming them and keeping track of them.

Definition. Let I be a set. A collection of sets indexed by I consists of a collection of sets S;, one set
S; for each element i € 1.

You could make this more precise by defining a collection of sets indexed by I to be a function from I
to the class of all sets. I'll stick with this informal definition, since it won’t cause us any difficulties in what
we do.

Let I = {1,2,3,4}. A collection of sets indexed by I consists of four sets Sy, Sa, S3, and S4. For

example,
Sl :{1,2,3}, ng{a,b,c}, SgZR, 54:{1,2,3}.

Note that S1 = S3; some of the sets in the collection may be identical.
Here’s another collection of sets indexed by I:

S1=0, Sa=72, Ss3={me}, Sy={pepperoni,sausage}.

This would not be very interesting if I were only considering finite collections of sets. Here are some
infinite collections of sets.

Let I =N ={1,2,3,...}. A collection of sets indexed by I is an infinite collection of sets Sy, Sa2, Ss,
S4y e
Here is a collection of sets indexed by N:

1 1
si-00 5= (04), = (01) o

1
In general, if n is a positive integer, then S,, = { 0, —).
n
Here’s another collection of sets indexed by N:
S1={..,-3,-2,-1,0,1,2,3,.. .}

Sy={...,—6,-4,-2,0,2,4,6,..}
Sy=1{...,—9,-6,-3,0,3,6,9,.. .}

In general, S, consists of the integers which are divisible by n.

Now let I = R. Here’s a collection of sets indexed by I:
Sy ={x,—a} for zeR.

For instance, I have sets S3, S_117/13, S, and so on, one for every real number.

Since R is uncountable, I can’t list the sets in this collection the way I could list collections of sets
indexed by N.

Here are a couple of the sets:

S5 =1{V2,-V2}, Si={42,-42}.
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Here’s another collection of sets indexed by R:
Sy = [x,00) for zeR.

Each set in this collection is an interval consisting of all real numbers greater than or equal to x. So,
for example,

S1=11,00), Sp=/[m, 00).

Definition. Let I be a set, and let {S;} be a collection of sets indexed by I.

(a) The union |J,; S; of the S; is the set

iel
USi:{s|s€Si for some i€ I},

el

(b) The intersection (), ;S; of the S; is the set

ﬂS’iz{s|s€Si for all i€ I}.
iel

iel

Remark. For a collection of sets S1, So, S3, .. .indexed by the natural numbers, you usually write the union
and intersection this way:
o0 o0
J S, and [ S
n=1 n=1

Example. Consider the following collection of sets indexed by N:

1 1 1
Sl—(O,l), SQ—<0,§>, Sg—<0,§>,,3n—<0,ﬁ>,

Prove:
(a) n@l <o, %) — (0,1).
(b) ﬁ (o, %) 9.

The collection of intervals is shown below. They actually lie on top of one another on the z-axis; I've
“pulled them up” so you can see them separately.
(0.110)—

0.1/9) —
(0.1/8) —
0,1/7) ——

0,1/6) ——

(0.1/5)

(0.1.4)

(0.1/3)

(0,1/2)

0.1




- 1 1
(a) I will show each set is contained in the other. Let x € U (O, —). Then z € (O, —) for some n > 1.
n n

n=1

1
This means that 0 < x < —.
n

1
Now n > 1 implies — < 1, s0 0 < 2 < 1. Hence, z € (0,1).
n

> 1
This proves that U <0, ﬁ) c (0,1).

n=1

> 1
Conversely, suppose = € (0,1). Now S; = (0,1), so by the definition of union, = € U <0, ﬁ) This

n=1
- 1
proves that (0,1) C U (O, —).
n

~ 1
(b) Since the empty set is a subset of any set, I have () C m (O, —).
n

n=1

~ 1 ~ 1
The opposite inclusion is m (O, —) C . To show this means to show that m (O, —) contains no
n n

n=1 n=1

elements. I'll give a proof by contradiction.

o0
1
Suppose on the contrary that ¢ € ﬂ (O, —). By the definition of intersection, this means that
n

n=1

1
ce <O, —) for every positive integer n.
n

Note that
lim — =0.
n—oo N
In the limit definition, choose € = ¢. Then there is a number M such that for all n > M, I have
1 1
c=¢> ‘— -0 =—.
n n

Choose a positive integer n such that n > M. Then

1
0<—<e
n

1 1
But this means that ¢ ¢ (O, —), contradicting the fact that ¢ € (O, —) for every positive integer n.
n n

This shows that there is no such element ¢, so the intersection is empty. 0O

> n
Example. Prove that U {O, —] =10,1).
et n+1

First, I’ll show that the left side is contained in the right side. Let x € U [O, n } I have to show

et n+1
that z € [0, 1).
. n n n .
Since z € U {O, —], I know that x € [O, —] for some n > 1. This means that
- n+1 n+1
0<o < ——.
- T n+1



But

1>0
n+1>n
n
1>
n+1
Therefore, 0 < 2 < 1. This means that z € [0,1). Hence, U [O, L} c [0,1).
et n+1

Next, I’ll show that the right side is contained in the left side. Suppose x € [0,1). T have to show that
> n
€ 0, ——1.
* anjl [ n—+ 1}
Since x € [0,1), I have 0 < x < 1. Note that

= 1.
n—oon + 1

T’ll pause to give a picture of what I’ll do next. The idea is that since

n
T is approaching 1, and since

n
z < 1, eventually the 1 terms must become larger than x:
n

n
n+1

X 1

Intuitively, if all the

limit couldn’t be 1.

Continuing the proof, in the limit definition, let ¢ = 1 — z. Then there is a number M such that if
n>M,

i 1’s stayed to the left of x, then their limit couldn’t be greater than x, so the
n

l—z=€¢>

_1‘.
n+1

n
Since 1 < 1, the absolute value becomes

n n
— —1)=1-— .
(n—l—l ) n+1

l—ax>1-—

The inequality above becomes

n+1

— >_
v n+1

n
n+1

<

That is, for some n I have z < % Since I already know x > 0, I have
n

0<r< .
n+1

n

This means that x € |0, v . By the definition of union, x € U 0,
n+1 - n

> n
0, ——|.
o]

n=1

1] Therefore, [0,1) C



Since I've proved both inclusions, I have | | [O, —Z J =10,1). O
n
n=1

Example. Prove that

ﬁ [1 3+ } =[1,3].

n=1

~ 1

I'll show that each of the sets ﬂ [1, 3+ —} and [1, 3] is contained in the other.

n
n=1

I'll do the easy inclusion first. Let 2 € [1,3]. Then 1 <z < 3.
1

For all n > 1, T have 3 < 3 + —. Hence,
n

1
1<z<3<3+—.
n

~ 1
Therefore, z € [1,3 + } for all n > 1. By definition of intersection, = € ﬂ [1, 3+ —} .

n
[ER
1

1
[1,34— } This means that = € {1,3 + —] for all n > 1 — that is,
n

S|

—

n=1

DL

Thus, | C

Next, let = €

187

1
1<xr<3+— forall n>1.
n

I have to show that z < 3. Suppose on the contrary that x > 3.

Note that )
lim <3 + —> =3.
n— o0 n

In the limit definition, let ¢ = x — 3. Then there is a number M such that if n > M,

1 1
6:$—3>‘3+——3': —
n n

1
e

(I can drop the absolute values because n is positive.)

For any n such that n > M, I have

1
r—3>—
n

1
>3+ —
n

1
But this contradicts the fact that 1 <2 <3+ — for all n > 1.
n

1 1
Intuitively, since lim (3 + —> = 3, if > 3 then eventually the 3 + —’s must shrink to the left of x.
n—oo n n




If all of them stayed to the right of x, the limit would be greater than or equal to x, so it couldn’t be 3.
This proves by contradiction that z < 3. Since I already know that 1 <z, Thavel <z <3, orz € [1,3].

oo

Thus, [ [1,3+ 1} c [1,3].
n

n=1

~ 1
Together with the first inclusion, this proves that ﬂ [1, 3+ —] =[1,3]. O
n

n=1

@2020 by Bruce Ikenaga 6



