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Infinite Unions and Intersections

The set constructions I’ve considered so far — things like A ∪ B, C, D ∩ E — have involved finite
numbers of sets. It’s often necessary to work with infinite collections of sets, and to do this, you need a way
of naming them and keeping track of them.

Definition. Let I be a set. A collection of sets indexed by I consists of a collection of sets Si, one set
Si for each element i ∈ I.

You could make this more precise by defining a collection of sets indexed by I to be a function from I
to the class of all sets. I’ll stick with this informal definition, since it won’t cause us any difficulties in what
we do.

Let I = {1, 2, 3, 4}. A collection of sets indexed by I consists of four sets S1, S2, S3, and S4. For
example,

S1 = {1, 2, 3}, S2 = {a, b, c}, S3 = R, S4 = {1, 2, 3}.
Note that S1 = S3; some of the sets in the collection may be identical.
Here’s another collection of sets indexed by I:

S1 = ∅, S2 = Z, S3 = {π, e}, S4 = {pepperoni, sausage}.

This would not be very interesting if I were only considering finite collections of sets. Here are some
infinite collections of sets.

Let I = N = {1, 2, 3, . . .}. A collection of sets indexed by I is an infinite collection of sets S1, S2, S3,
S4, . . . .

Here is a collection of sets indexed by N:

S1 = (0, 1), S2 =

(

0,
1

2

)

, S3 =

(

0,
1

3

)

, . . . .

In general, if n is a positive integer, then Sn =

(

0,
1

n

)

.

Here’s another collection of sets indexed by N:

S1 = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
S2 = {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}
S3 = {. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}

...

In general, Sn consists of the integers which are divisible by n.

Now let I = R. Here’s a collection of sets indexed by I:

Sx = {x,−x} for x ∈ R.

For instance, I have sets S3, S−117/13, Sπ, and so on, one for every real number.
Since R is uncountable, I can’t list the sets in this collection the way I could list collections of sets

indexed by N.
Here are a couple of the sets:

S√
2
= {

√
2,−

√
2}, S42 = {42,−42}.
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Here’s another collection of sets indexed by R:

Sx = [x,∞) for x ∈ R.

Each set in this collection is an interval consisting of all real numbers greater than or equal to x. So,
for example,

S1 = [1,∞), Sπ = [π,∞).

Definition. Let I be a set, and let {Si} be a collection of sets indexed by I.

(a) The union
⋃

i∈I Si of the Si is the set
⋃

i∈I

Si = {s | s ∈ Si for some i ∈ I}.

(b) The intersection
⋂

i∈I Si of the Si is the set
⋂

i∈I

Si = {s | s ∈ Si for all i ∈ I}.

Remark. For a collection of sets S1, S2, S3, . . . indexed by the natural numbers, you usually write the union
and intersection this way:

∞
⋃

n=1

Sn and

∞
⋂

n=1

Sn.

Example. Consider the following collection of sets indexed by N:

S1 = (0, 1), S2 =

(

0,
1

2

)

, S3 =

(

0,
1

3

)

, . . . , Sn =

(

0,
1

n

)

, . . . .

Prove:

(a)

∞
⋃

n=1

(

0,
1

n

)

= (0, 1).

(b)

∞
⋂

n=1

(

0,
1

n

)

= ∅.

The collection of intervals is shown below. They actually lie on top of one another on the x-axis; I’ve
“pulled them up” so you can see them separately.

(0,1)

(0,1/2)

(0.1/3)

(0,1.4)

(0.1/5)

(0,1/6)

(0,1/7)

(0.1/8)

(0.1/9)

(0.1/10)
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(a) I will show each set is contained in the other. Let x ∈
∞
⋃

n=1

(

0,
1

n

)

. Then x ∈
(

0,
1

n

)

for some n > 1.

This means that 0 < x <
1

n
.

Now n > 1 implies
1

n
< 1, so 0 < x < 1. Hence, x ∈ (0, 1).

This proves that

∞
⋃

n=1

(

0,
1

n

)

⊂ (0, 1).

Conversely, suppose x ∈ (0, 1). Now S1 = (0, 1), so by the definition of union, x ∈
∞
⋃

n=1

(

0,
1

n

)

. This

proves that (0, 1) ⊂
∞
⋃

n=1

(

0,
1

n

)

.

Hence,

∞
⋃

n=1

(

0,
1

n

)

= (0, 1).

(b) Since the empty set is a subset of any set, I have ∅ ⊂
∞
⋂

n=1

(

0,
1

n

)

.

The opposite inclusion is
∞
⋂

n=1

(

0,
1

n

)

⊂ ∅. To show this means to show that
∞
⋂

n=1

(

0,
1

n

)

contains no

elements. I’ll give a proof by contradiction.

Suppose on the contrary that c ∈
∞
⋂

n=1

(

0,
1

n

)

. By the definition of intersection, this means that

c ∈
(

0,
1

n

)

for every positive integer n.

Note that

lim
n→∞

1

n
= 0.

In the limit definition, choose ǫ = c. Then there is a number M such that for all n > M , I have

c = ǫ >

∣

∣

∣

∣

1

n
− 0

∣

∣

∣

∣

=
1

n
.

Choose a positive integer n such that n > M . Then

0 <
1

n
< c.

But this means that c /∈
(

0,
1

n

)

, contradicting the fact that c ∈
(

0,
1

n

)

for every positive integer n.

This shows that there is no such element c, so the intersection is empty.

Example. Prove that

∞
⋃

n=1

[

0,
n

n+ 1

]

= [0, 1).

First, I’ll show that the left side is contained in the right side. Let x ∈
∞
⋃

n=1

[

0,
n

n+ 1

]

. I have to show

that x ∈ [0, 1).

Since x ∈
∞
⋃

n=1

[

0,
n

n+ 1

]

, I know that x ∈
[

0,
n

n+ 1

]

for some n ≥ 1. This means that

0 ≤ x ≤ n

n+ 1
.
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But
1 > 0

n+ 1 > n

1 >
n

n+ 1

Therefore, 0 ≤ x < 1. This means that x ∈ [0, 1). Hence,

∞
⋃

n=1

[

0,
n

n+ 1

]

⊂ [0, 1).

Next, I’ll show that the right side is contained in the left side. Suppose x ∈ [0, 1). I have to show that

x ∈
∞
⋃

n=1

[

0,
n

n+ 1

]

.

Since x ∈ [0, 1), I have 0 ≤ x < 1. Note that

lim
n→∞

n

n+ 1
= 1.

I’ll pause to give a picture of what I’ll do next. The idea is that since
n

n+ 1
is approaching 1, and since

x < 1, eventually the
n

n+ 1
terms must become larger than x:

| |

x 1

Intuitively, if all the
n

n+ 1
’s stayed to the left of x, then their limit couldn’t be greater than x, so the

limit couldn’t be 1.
Continuing the proof, in the limit definition, let ǫ = 1 − x. Then there is a number M such that if

n > M ,

1− x = ǫ >

∣

∣

∣

∣

n

n+ 1
− 1

∣

∣

∣

∣

.

Since
n

n+ 1
< 1, the absolute value becomes

−
(

n

n+ 1
− 1

)

= 1− n

n+ 1
.

The inequality above becomes

1− x > 1− n

n+ 1

−x > − n

n+ 1

x <
n

n+ 1

That is, for some n I have x <
n

n+ 1
. Since I already know x ≥ 0, I have

0 ≤ x <
n

n+ 1
.

This means that x ∈
[

0,
n

n+ 1

)

. By the definition of union, x ∈
∞
⋃

n=1

[

0,
n

n+ 1

]

. Therefore, [0, 1) ⊂
∞
⋃

n=1

[

0,
n

n+ 1

]

.
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Since I’ve proved both inclusions, I have

∞
⋃

n=1

[

0,
n

n+ 1

]

= [0, 1).

Example. Prove that
∞
⋂

n=1

[

1, 3 +
1

n

]

= [1, 3].

I’ll show that each of the sets

∞
⋂

n=1

[

1, 3 +
1

n

]

and [1, 3] is contained in the other.

I’ll do the easy inclusion first. Let x ∈ [1, 3]. Then 1 ≤ x ≤ 3.

For all n ≥ 1, I have 3 < 3 +
1

n
. Hence,

1 ≤ x ≤ 3 < 3 +
1

n
.

Therefore, x ∈
[

1, 3 +
1

n

]

for all n ≥ 1. By definition of intersection, x ∈
∞
⋂

n=1

[

1, 3 +
1

n

]

.

Thus, [1, 3] ⊂
∞
⋂

n=1

[

1, 3 +
1

n

]

.

Next, let x ∈
∞
⋂

n=1

[

1, 3 +
1

n

]

. This means that x ∈
[

1, 3 +
1

n

]

for all n ≥ 1 — that is,

1 ≤ x ≤ 3 +
1

n
for all n ≥ 1.

I have to show that x ≤ 3. Suppose on the contrary that x > 3.
Note that

lim
n→∞

(

3 +
1

n

)

= 3.

In the limit definition, let ǫ = x− 3. Then there is a number M such that if n > M ,

ǫ = x− 3 >

∣

∣

∣

∣

3 +
1

n
− 3

∣

∣

∣

∣

=

∣

∣

∣

∣

1

n

∣

∣

∣

∣

=
1

n
.

(I can drop the absolute values because n is positive.)
For any n such that n > M , I have

x− 3 >
1

n

x > 3 +
1

n

But this contradicts the fact that 1 ≤ x ≤ 3 +
1

n
for all n ≥ 1.

Intuitively, since lim
n→∞

(

3 +
1

n

)

= 3, if x > 3 then eventually the 3 +
1

n
’s must shrink to the left of x.

| |

3 x
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If all of them stayed to the right of x, the limit would be greater than or equal to x, so it couldn’t be 3.
This proves by contradiction that x ≤ 3. Since I already know that 1 ≤ x, I have 1 ≤ x ≤ 3, or x ∈ [1, 3].

Thus,

∞
⋂

n=1

[

1, 3 +
1

n

]

⊂ [1, 3].

Together with the first inclusion, this proves that
∞
⋂

n=1

[

1, 3 +
1

n

]

= [1, 3].
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