Limits at Infinity

In this section, I'll discuss proofs for limits of the form $\lim_{x\to\infty} f(x)$. They are like ϵ - δ proofs, though the setup and algebra are a little different.

Recall that $\lim_{x\to c} f(x) = L$ means that for every $\epsilon > 0$, there is a δ such that if

$$\delta > |x - c| > 0$$
, then $\epsilon > |f(x) - L|$.

Definition. $\lim_{x\to\infty} f(x) = L$ means that for every $\epsilon > 0$, there is an M such that if

$$x > M$$
, then $\epsilon > |f(x) - L|$.

In other words, I can make f(x) as close to L as I please by making x sufficiently large.

Remarks. Limits at infinity often occur as limits of sequences, such as

$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$, ..., $\frac{1}{n}$,

In this case, $\lim_{n\to\infty} \frac{1}{n} = 0$. I won't make a distinction between the limit at infinity of a sequence and the limit at infinity of a function; the proofs you do are essentially the same in both cases.

There is s similar definition for $\lim_{x\to-\infty} f(x) = L$, and the proofs are similar as well. I'll stick to $\lim_{x\to\infty} f(x)$ here.

Example. Prove that $\lim_{n\to\infty}\frac{1}{n}=0$.

As with ϵ - δ proofs, I do some scratch work, working backwards from what I want. Then I write the "real proof" in the forward direction.

Scratch work. I want

$$\epsilon > \left| \frac{1}{n} - 0 \right| = \left| \frac{1}{n} \right| = \frac{1}{n}.$$

I want to drop the absolute values, so I'll assume n > 0. Rearranging the inequality, I get $n > \frac{1}{\epsilon}$.

Here's the real proof. Let $\epsilon > 0$. Set $M = \frac{1}{\epsilon}$. Since $\epsilon > 0$, I have $M = \frac{1}{\epsilon} > 0$. Suppose n > M. Then n > M > 0, and

$$n > M = \frac{1}{\epsilon}$$

$$\epsilon > \frac{1}{n}$$

$$\epsilon > \left| \frac{1}{n} \right|$$

$$\epsilon > \left| \frac{1}{n} \right|$$

This proves that $\lim_{n\to\infty} \frac{1}{n} = 0$. \square

Example. Prove that $\lim_{x\to\infty} \frac{6x+1}{2x+1} = 3$.

Scratch work. I want

$$\epsilon > \left| \frac{6x+1}{2x+1} - 3 \right| = \left| \frac{6x+1-3(2x+1)}{2x+1} \right| = \left| \frac{-2}{2x+1} \right| = \left| \frac{2}{2x+1} \right| = \frac{2}{2x+1}.$$

In order to drop the absolute values, I need to assume x > 0.

Rearrange the inequality:

$$\epsilon > \frac{2}{2x+1}$$

$$(2x+1)\epsilon > 2$$

$$2x\epsilon + \epsilon > 2$$

$$2x\epsilon > 2 - \epsilon$$

$$x > \frac{2-\epsilon}{2\epsilon}$$

Here's the real proof. Let $\epsilon > 0$. Set $M = \max\left(0, \frac{2-\epsilon}{2\epsilon}\right)$. If x > M, then x > 0 and $x > \frac{2-\epsilon}{2\epsilon}$. So

$$x > \frac{2 - \epsilon}{2\epsilon}$$

$$2\epsilon x > 2 - \epsilon$$

$$2\epsilon x + \epsilon > 2$$

$$\epsilon (2x + 1) > 2$$

$$\epsilon > \frac{2}{2x + 1}$$

$$\epsilon > \left| \frac{2}{2x + 1} \right|$$

$$\epsilon > \left| \frac{-2}{2x + 1} \right|$$

$$\epsilon > \left| \frac{6x + 1 - 3(2x + 1)}{2x + 1} \right|$$

$$\epsilon > \left| \frac{6x + 1}{2x + 1} - 3 \right|$$

Therefore,

$$\lim_{x \to \infty} \frac{6x+1}{2x+1} = 3. \quad \Box$$

Note that the expression $\frac{2-\epsilon}{2\epsilon}$ would be negative if $\epsilon>2$. So I took M to be the max of 0 and $\frac{2-\epsilon}{2\epsilon}$ to ensure that if x>M, then x would be positive. Now you actually need 2x+1 to be positive in order to put on the absolute values, and 2x+1>0 if $x>-\frac{1}{2}$. It isn't hard to prove that $\frac{2-\epsilon}{2\epsilon}>-\frac{1}{2}$, so in fact I don't need to take the max with 0 — provided that I'm willing to prove that $\frac{2-\epsilon}{2\epsilon}>-\frac{1}{2}$. I decided to take the easy way out!

Example. Prove that $\lim_{n\to\infty} (-1)^n$ is undefined.

I'll use proof by contradiction. Suppose that

$$\lim_{n \to \infty} (-1)^n = L.$$

Taking $\epsilon = \frac{1}{2}$ in the definition, I can find M such that if n > M, then $\frac{1}{2} > |(-1)^n - L|$. Choose p to be an even number greater than M. Then

$$\frac{1}{2} > |(-1)^p - L| = |1 - L|.$$

This says that the distance from L to 1 is less than $\frac{1}{2}$, so

$$\frac{1}{2} < L < \frac{3}{2}.$$

Choose q to be an odd number greater than M. Then

$$\frac{1}{2} > |(-1)^q - L| = |-1 - L|.$$

This says that the distance from L to -1 is less than $\frac{1}{2}$, so

$$-\frac{3}{2} < L < -\frac{1}{2}.$$

This is a contradiction, since L can't be in $\left(\frac{1}{2},\frac{3}{2}\right)$ and in $\left(-\frac{3}{2},-\frac{1}{2}\right)$ at the same time. Hence, $\lim_{n\to\infty}(-1)^n$ is undefined. \square