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Limits

The definition of a limit involves both universal and existential quantifiers.
Let f be a function from the real numbers to the real numbers, and let c be a real number. Assume

that f is defined on a open interval containing c. The statement lim
x→c

f(x) = L means:

For every ǫ > 0, there is a δ > 0, such that if δ > |x− c| > 0, then ǫ > |f(x) − L|.

Think of δ as a thermostat, f(x) as the actual temperature in a room, and L as the ideal temperature.
Someone challenges you to make the actual temperature f(x) fall within a certain tolerance ǫ of the ideal
temperature L. You must do that by setting your δ-thermostat appropriately (so that x is sufficiently close
to c).

Moreover, note that it says “for every ǫ > 0”. It’s isn’t enough for you to say what you’d do if you were
challenged with ǫ = 0.1 or ǫ = 0.000004. You must prove that you can meet the challenge no matter what ǫ

you’re challenged with.
Finally, note the stipulation “|x− c| > 0”. This implies that x 6= c, since x = c gives |x− c| = 0. Thus,

the conclusion “ǫ > |f(x)−L|” must hold only for x’s close to c, but not necessarily for x = c. (It may hold
for x = c, but it doesn’t have to.)

What does this mean? It’s a precise way of saying that the value of the limit of f(x) as x approaches c
does not depend on what f(x) does at x = c — over even whether f(c) is defined.

For example, consider the functions whose graphs are shown below.

x=3 x=3

y = f(x) y = f(x)

In both cases,

lim
x→3

f(x) = 4.

In the first case, f(3) = 2: The value of the function at x = 3 is different from the value of the limit.
In the second case, f(3) is undefined.
The fact that lim

x→3

f(x) 6= f(3) means that f is not continuous at x = 3.

Example. Use the ǫ-δ definition of the limit to prove that

lim
x→2

(5x+ 4) = 14.

In this case, c = 2, f(x) = 5x+ 4, and L = 14. So here is what I need to prove.
Suppose ǫ > 0. I must find a δ > 0 such that if δ > |x− 2| > 0, then ǫ > |(5x+ 4)− 14|.
Note that at this point ǫ is fixed — given — but all you can assume is that it’s some positive number.

Since it is given, however, I can use it in finding an appropriate δ.
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I’ll show how to find δ by working backwards; then I’ll write the proof “forwards”, the way you should
write it.

I want
ǫ > |(5x+ 4)− 14|, or ǫ > |5x− 10|, or

ǫ

5
> |x− 2|.

It looks like I should set δ =
ǫ

5
.

All of this has been on “scratch paper”; now here’s the real proof.

Suppose ǫ > 0. Let δ =
ǫ

5
. If δ > |x− 2| > 0, then

ǫ

5
> |x− 2|, so ǫ > |5x− 10|, or ǫ > |(5x+ 4)− 14|.

Thus, if δ =
ǫ

5
and δ > |x− 2| > 0, then ǫ > |(5x+ 4)− 14|. This proves that lim

x→2

(5x+ 4) = 14.

Example. Let

f(x) =

{

3x+ 4 if x < 1
9− 2x if x ≥ 1

.

Use the ǫ-δ definition of the limit to prove that

lim
x→1

f(x) = 7.

Let ǫ > 0. I must find δ > 0 such that if δ > |x− 1| > 0, then ǫ > |f(x)− 7|.
Here’s my scratch work. First, for x < 1,

ǫ > |f(x)− 7|, ǫ > |(3x+ 4)− 7|, ǫ > |3x− 3|,
ǫ

3
> |x− 1|.

It looks like I should take δ =
ǫ

3
.

For x > 1,

ǫ > |f(x) − 7|, ǫ > |(9 − 2x)− 7|, ǫ > |2− 2x| = |2x− 2|,
ǫ

2
> |x− 1|.

It looks like I should take δ =
ǫ

2
.

In order to ensure that both the x < 1 and x > 1 requirements are satisfied, I’ll take δ to be the smaller

of the two: δ =
ǫ

3
.

Now here’s the proof written out correctly.

Suppose ǫ > 0. Let δ =
ǫ

3
, and assume that δ > |x− 1| > 0.

If x < 1, then
ǫ

3
> |x− 1|, so ǫ > |3x− 3| = |(3x+ 4)− 7| = |f(x)− 7|.

Now consider the case x > 1. Since
ǫ

3
> |x− 1|, and since

ǫ

2
>

ǫ

3
, I have

ǫ

2
> |x− 1|. Therefore,

ǫ > |2x− 2| = |2− 2x| = |(9− 2x)− 7| = |f(x)− 7|.
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(The case x = 1 is ruled out because |x− 1| > 0.)

Thus, taking δ =
ǫ

3
guarantees that if δ > |x−1| > 0, then ǫ > |f(x)−7|. This proves that lim

x→1

f(x) = 7.

Example. Use the ǫ-δ definition of the limit to prove that

lim
x→2

x2 = 4.

Let ǫ > 0. I want to find δ > 0 such that if δ > |x− 2| > 0, then ǫ > |x2 − 4|.
I start out as usual with my scratch work:

ǫ > |x2 − 4| = |x− 2||x+ 2|.

Now I have a problem. I can use δ to control |x− 2|, but what do I do about |x+ 2|?
The idea is this: Since I have complete control over δ, I can assume δ ≤ 1. When I finally set δ, I can

make it smaller if necessary to ensure that this condition is met.
Now if δ ≤ 1, then |x− 2| < 1, so 1 < x < 3, and 3 < x+ 2 < 5. In particular, the biggest |x+ 2| could

be is 5. So now
ǫ > |x− 2||x+ 2| becomes ǫ > |x− 2| · 5, so

ǫ

5
> |x− 2|.

This inequality suggests that I set δ =
ǫ

5
— but then I remember that I needed to assume δ ≤ 1. I can

meet both of these conditions by setting δ to the smaller of 1 and
ǫ

5
: that is, δ = min

(

1,
ǫ

5

)

.

That was scratchwork; now here’s the real proof.

Let ǫ > 0. Set δ = min
(

1,
ǫ

5

)

. Suppose δ > |x− 2| > 0.

Since δ ≤ 1, I have
1 > |x− 2|

1 < x < 3

3 < x+ 2 < 5

Therefore, 5 > |x+ 2|.

Now δ ≤
ǫ

5
, so

ǫ

5
> |x− 2|.

Now multiply the inequalities 5 > |x+ 2| and
ǫ

5
> |x− 2|:

ǫ =
ǫ

5
· 5 > |x− 2||x+ 2| = |x2 − 4|.

Thus, if δ = min
(

1,
ǫ

5

)

and δ > |x− 2| > 0, then ǫ > |x2 − 4|. This proves that lim
x→2

x2 = 4.

Example. Prove that lim
x→2

x2 + 11

x+ 3
= 3.

Let ǫ > 0. I must find δ such that if δ > |x− 2| > 0, then ǫ >

∣

∣

∣

∣

x2 + 11

x+ 3
− 3

∣

∣

∣

∣

.

I’ll start with some scratchwork.
∣

∣

∣

∣

x2 + 11

x+ 3
− 3

∣

∣

∣

∣

=

∣

∣

∣

∣

x2 + 11− 3(x+ 3)

x+ 3

∣

∣

∣

∣

=

∣

∣

∣

∣

x2 − 3x+ 2

x+ 3

∣

∣

∣

∣

=

∣

∣

∣

∣

(x− 2)(x− 1)

x+ 3

∣

∣

∣

∣

= |x− 2|

∣

∣

∣

∣

x− 1

x+ 3

∣

∣

∣

∣

.
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I can use δ to control |x − 2| directly. I need to control the size of

∣

∣

∣

∣

x− 1

x+ 3

∣

∣

∣

∣

. It’s important to think of

this as |x− 1| ·

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

, not as |x− 1| and |x+ 3|!

Assume 1 ≥ δ. Then 1 > |x− 2|, so 1 < x < 3.
For x− 1, 0 < x− 1 < 2, so |x− 1| < 2.

For

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

, 4 < x+ 3 < 6, so
1

4
>

1

x+ 3
>

1

6
, and

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

<
1

4
.

Since all the number involved are positive, I can multiply the inequalities to obtain

2 ·
1

4
> |x− 1| ·

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

, or
1

2
> |x− 1| ·

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

.

Thus, I’ll get ǫ > |x− 2|

∣

∣

∣

∣

x− 1

x+ 3

∣

∣

∣

∣

if I have ǫ > |x− 2| ·
1

2
, or 2ǫ > |x− 2|. Here’s the proof.

Let ǫ > 0. Set δ = min(2ǫ, 1). Suppose δ > |x− 2| > 0.
Since 1 ≥ δ, 1 > |x− 2|, and 1 < x < 3.
First, 0 < x− 1 < 2, so |x− 1| < 2.

Next,

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

, 4 < x+ 3 < 6, so
1

4
>

1

x+ 3
>

1

6
, and

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

<
1

4
.

Hence,

2 ·
1

4
> |x− 1| ·

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

, or
1

2
> |x− 1| ·

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

.

In addition, 2ǫ ≥ δ > |x− 2|. Therefore,

ǫ > |x− 2| ·
1

2
> |x− 2| · |x− 1| ·

∣

∣

∣

∣

1

x+ 3

∣

∣

∣

∣

=

∣

∣

∣

∣

x2 + 11

x+ 3
− 3

∣

∣

∣

∣

.

This proves that lim
x→2

x2 + 11

x+ 3
= 3.
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