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Limits

The definition of a limit involves both universal and existential quantifiers.
Let f be a function from the real numbers to the real numbers, and let ¢ be a real number. Assume
that f is defined on a open interval containing c¢. The statement lim f(z) = L means:
r—rc

For every € > 0, there is a § > 0, such that if § > |z — ¢| > 0, then € > |f(x) — L|.

Think of § as a thermostat, f(z) as the actual temperature in a room, and L as the ideal temperature.
Someone challenges you to make the actual temperature f(x) fall within a certain tolerance € of the ideal
temperature L. You must do that by setting your o-thermostat appropriately (so that z is sufficiently close
to ¢).

Moreover, note that it says “for every e > 0”. It’s isn’t enough for you to say what you’d do if you were
challenged with € = 0.1 or ¢ = 0.000004. You must prove that you can meet the challenge no matter what €
you’re challenged with.

Finally, note the stipulation “|z — ¢| > 0”. This implies that z # ¢, since x = ¢ gives |x — ¢| = 0. Thus,
the conclusion “e > |f(x) — L|” must hold only for x’s close to ¢, but not necessarily for x = ¢. (It may hold
for « = ¢, but it doesn’t have to.)

What does this mean? It’s a precise way of saying that the value of the limit of f(z) as x approaches ¢
does not depend on what f(z) does at © = ¢ — over even whether f(c) is defined.

For example, consider the functions whose graphs are shown below.

y = f(x) y = fx)
L
x=3 x=3
In both cases,
lim f(z) = 4.

In the first case, f(3) = 2: The value of the function at x = 3 is different from the value of the limit.
In the second case, f(3) is undefined.
The fact that lin% f(z) # f(3) means that f is not continuous at x = 3.

r—r

Example. Use the e-¢ definition of the limit to prove that

lim (5x + 4) = 14.
T—2

In this case, ¢ = 2, f(x) = 5z + 4, and L = 14. So here is what I need to prove.

Suppose € > 0. I must find a § > 0 such that if § > |z — 2| > 0, then € > |(5xz + 4) — 14|.

Note that at this point € is fixed — given — but all you can assume is that it’s some positive number.
Since it is given, however, I can use it in finding an appropriate §.
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T’ll show how to find & by working backwards; then I'll write the proof “forwards”, the way you should
write it.
I want p
e>|(bx+4)—14], or e> |5z —10|, or 5> |z —2].

It looks like I should set § = %
All of this has been on “scratch paper”; now here’s the real proof.
Suppose € > 0. Let 6 = g If 6 > |x — 2| > 0, then
€
= > [z —2], so e>|5z—10|, or e>|(bz+4)— 14|

Thus, if § = g and 0 > |z — 2| > 0, then € > |(5x + 4) — 14|. This proves that lim2(5a: +4)=14. O
z—

Example. Let

_J3x+4 fz<l1
f(x)_{g—zx ifr>1"

Use the e-0 definition of the limit to prove that

lim f(z) ="7.

r—1

Let € > 0. I must find 6 > 0 such that if § > |z — 1| > 0, then € > |f(x) — 7|.
Here’s my scratch work. First, for x < 1,

e>|f@) =7, e>|Bz+4) =7, e>|3z—3| §>|;v—1|.

It looks like I should take & = %
For x > 1,

e>|f@) =T, e>[(9—2x) =T, e>]2—2z|=|22 -2 §>|az—1|.

It looks like I should take § =

In order to ensure that both the x < 1 and x > 1 requirements are satisfied, I’ll take d to be the smaller
of the two: § = —.

Now here’s the proof written out correctly.

[N e

Suppose € > 0. Let § = %, and assume that § > |x — 1| > 0.
If x < 1, then
§>|;v—1|, so e>|3z—3|=|Bx+4)—7 = |f(z) - 7.

Now consider the case z > 1. Since % > |z — 1], and since % > %, I have % > |x — 1|. Therefore,

€> (20— 2| =2 — 22| = |(9 — 22) — 7| = | f(z) — 7|.
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(The case x = 1 is ruled out because |z — 1| > 0.)
Thus, taking § = % guarantees that if § > |[x—1| > 0, then € > | f(z)—7|. This proves that lim1 flx)="1.
T—

Example. Use the e-¢ definition of the limit to prove that

lim z2 = 4.
r—2

Let € > 0. I want to find § > 0 such that if § > |z — 2| > 0, then € > |2% — 4|.
I start out as usual with my scratch work:

€> |22 — 4] = |z —2||]z + 2|

Now I have a problem. I can use ¢ to control |z — 2|, but what do I do about |z + 2|?
The idea is this: Since I have complete control over §, I can assume § < 1. When 1 finally set §, I can
make it smaller if necessary to ensure that this condition is met.
Now if 6 <1, then [z — 2| < 1,s0 1 <z <3, and 3 < z +2 < 5. In particular, the biggest |x + 2| could
be is 5. So now .
€> |r—2||lz+2| becomes €>|z—2|-5, so 5> |z —2].

This inequality suggests that I set § = g — but then I remember that I needed to assume é < 1. I can

meet both of these conditions by setting § to the smaller of 1 and g: that is, § = min (1, g)

That was scratchwork; now here’s the real proof.

Let € > 0. Set § = min (1, g) Suppose 0 > |z — 2| > 0.
Since § < 1, I have

1> |z —2
l<ax<3
3<z+2<5

Therefore, 5 > |z + 2|.
€ €
Now § < — - —2|.
ow _5,so5>|x |

Now multiply the inequalities 5 > |z + 2| and g > |z —2f:
= g 5> |z — 2|z +2| = |22 — 4|.

Thus, if 6 = min (1, g) and § > |z — 2| > 0, then € > |2 — 4|. This proves that limzx2 =4. O
T—

2411
Example. Prove that lim T =3.
=2 xr+3
. 2+ 11
Let € > 0. I must find § such that if § > |z — 2| > 0, then € > 213 -3
I'll start with some scratchwork.
:1:2+11_3 |22 +11-3(x+3)|  |2* =3z +2] |(z—2)(z—1) BT z—1
x+3 - z+3 - x+3 - x+3 - x+3|
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rz—1

I can use ¢ to control |x — 2| directly. I need to control the size of 213 ‘ It’s important to think of
x

1
this as |:z:—1|"— , not as |z — 1| and |z + 3|!
z+3

Assume 1 > 4. Then 1> |z —2],s01 <z < 3.
Forz—1,0<z—-1<2,s0 |z —1]<2.

1 1 1 1 1
F 4 3<6 ->——>— and |—— —.
Or‘x—f—?)’ <z+ <,so4>x+3>6,an x+3<4
Since all the number involved are positive, I can multiply the inequalities to obtain
1 1 1 1
2. = -1 |—— = 1] |——].
4>|33 | ‘;v—l—?)’ or 2>|:1: | ‘x—i—?)‘

1
Thus, I'll get € > |x — 2| ‘ if T have € > |z — 2| - 30 or 2¢ > |z — 2|. Here’s the proof.

z—1
x+3
Let € > 0. Set ¢ = min(2e, 1). Suppose § > |z — 2| > 0.

Since 1 >4,1> |z —2|,and 1 <z < 3.
First, 0 <z —1<2,s0 |z — 1| <2.

1 1 1 1 1 1
Next, |——1, 4 3<6 ->——>— and —.
ext, 3‘, <z+ <,so4>x+3>6,an x+3‘<4
Hence,
1 1 1 1
92.= —1]- - I I
4>|33 | x+3" or 2>|:1: | ‘x—i—?)‘
In addition, 2¢ > § > |z — 2|. Therefore,
o2 1>| o - Je— 1] 1 x? 411 5
e>|x—2|- < 2| |z -1/ = — 3.
2 71" v z+3| | z+3
2 + 11
This proves that lim =3. 0O
z—2 1+ 3
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