Order Relations

A partial order on a set is, roughly speaking, a relation that behaves like the relation \leq on \mathbb{R} .

Definition. Let X be a set, and let \sim be a relation on X. \sim is a **partial order** if:

- (a) (Reflexive) For all $x \in X$, $x \sim x$.
- (b) (Antisymmetric) For all $x, y \in X$, if $x \sim y$ and $y \sim x$, then x = y.
- (c) (Transitive) For all $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

Example. For each relation, check each axiom for a partial order. If the axiom holds, prove it. If the axiom does not hold, give a specific counterexample.

- (a) The relation \leq on \mathbb{R} .
- (b) The relation < on \mathbb{R} .
- (a) For all $x \in \mathbb{R}$, $x \leq x$: Reflexivity holds.

For all $x, y \in \mathbb{R}$, if $x \leq y$ and $y \leq x$, then x = y: Antisymmetry holds.

For all $x, y, z \in \mathbb{R}$, if $x \leq y$ and $y \leq z$, then $x \leq z$: Transitivity holds.

Thus, \leq is a partial order.

(b) For no x is it true that x < x, so reflexivity fails.

Antisymmetry would say: If x < y and y < x, then x = y. However, for no $x, y \in \mathbb{R}$ is it true that x < y and y < x. Therefore, the first part of the conditional is false, and the conditional is true. Thus, antisymmetry is vacuously true.

If x < y and y < z, then x < z. Therefore, transitivity holds.

Hence, < is not a partial order.

Example. Let X be a set and let $\mathcal{P}(X)$ be the power set of X — i.e. the set of all subsets of X. Show that the relation of **set inclusion** is a partial order on $\mathcal{P}(X)$.

Subsets A and B of X are related under set inclusion if $A \subset B$.

If $A \subset X$, then $A \subset A$. The relation is reflexive.

Suppose $A, B \subset X$. If $A \subset B$ and $B \subset A$, then by definition of set equality, A = B. The relation is symmetric.

Finally, suppose $A, B, C \subset X$. If $A \subset B$ and $B \subset C$, then $A \subset C$. (You can write out the easy proof using elements.) The relation is transitive.

Here's a particular example. Let $X = \{a, b, c\}$. This is a picture of the set inclusion relation on $\mathcal{P}(X)$:

Definition. Let (X, \leq) be a partially ordered set. The **lexicographic order** (or **dictionary order**) on $X \times X$ is defined as follows: $(x_1, y_1) \sim (x_2, y_2)$ means that

- (a) $x_1 < x_2$, or
- (b) $x_1 = x_2$ and $y_1 \le y_2$.

Note that $(x_1, y_1) \sim (x_2, y_2)$ implies $x_1 \leq x_2$.

You can extend the definition to two different partially ordered sets X and Y, or a sequence X_1, X_2, \ldots, X_n of partially ordered sets in the same way. The name *dictionary order* comes from the fact that it describes the way words are ordered alphabetically in a dictionary. For instance, "aardvark" comes before "banana" because "a" comes before "b". If the first letters are the same, as with "mystery" and "meat", then you look at the second letters: "e" comes before "y", so "meat" comes before "mystery".

In the picture above, $(-2,2) \sim (-1,-2)$, because -2 < -1. And $(2,1) \sim (2,4)$ because the x-coordinates are equal and 1 < 4.

Proposition. The lexicographic order on $X \times X$ is a partial order.

Proof. First, $(x, y) \sim (x, y)$, since x = x and $y \leq y$. ~ is reflexive.

Next, suppose $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_1, y_1)$. Now $(x_1, y_1) \sim (x_2, y_2)$ means that either $x_1 < x_2$ or $x_1 = x_2$. The first case $x_1 < x_2$ is impossible, since this would contradict $(x_2, y_2) \sim (x_1, y_1)$. Therefore, $x_1 = x_2$. Then $(x_1, y_1) \sim (x_2, y_2)$ implies $y_1 \leq y_2$ and $(x_2, y_2) \sim (x_1, y_1)$ implies $y_2 \leq y_1$. Hence, $y_1 = y_2$. Therefore, $(x_1, y_1) = (x_2, y_2)$. \sim is antisymmetric.

Finally, suppose $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$. To keep things organized, I'll consider the four cases.

- (a) If $x_1 < x_2$ and $x_2 < x_3$, then $x_1 < x_3$, so $(x_1, y_1) \sim (x_3, y_3)$.
- (b) If $x_1 < x_2$ and $x_2 = x_3$, then $x_1 < x_3$, so $(x_1, y_1) \sim (x_3, y_3)$.
- (c) If $x_1 = x_2$ and $x_2 < x_3$, then $x_1 < x_3$, so $(x_1, y_1) \sim (x_3, y_3)$.
- (d) If $x_1 = x_2$ and $x_2 = x_3$, then $y_1 \le y_2$ and $y_2 \le y_3$. This implies $x_1 = x_3$ and $y_1 \le y_3$, so $(x_1, y_1) \sim (x_3, y_3)$.

Hence, \sim is transitive, and this completes the proof that \sim is a partial order.

A common mistake in working with partial orders — and in real life — consists of *assuming* that if you have two things, then one must be bigger than the other. When this *is* true about two things, the things are said to be **comparable**. However, in an arbitrary partially ordered set, some pairs of elements are comparable and some are not.

Definition. Let \sim be a relation on a set X. x and y in X are **comparable** if either $x \sim y$ or $y \sim x$.

Here's a pictorial example to illustrate the idea. You can sometimes describe an order relation by drawing a graph like the one below:

This picture shows a relation \sim on the set

$$S = \{a, b, c, d, e, f, g, h, i\}.$$

Two elements are comparable if they're joining by a sequence of edges that goes upward "without reversing direction". (Think of "bigger" elements being above and "smaller" elements being below.) It's also understood that every element satisfies $x \sim x$.

For example, $f \sim c$, since there's an upward segment connecting f to c. And $f \sim a$, since there's an upward path of segments $f \rightarrow c \rightarrow b \rightarrow a$ connecting f to a.

On the other hand, there are elements which are not comparable. For example, d and e are not comparable, because there is no upward path of segments connecting one to the other. Likewise, $g \sim h$ and $g \sim i$, but h and i are not comparable.

Notice that a is comparable to every element of the set, and that $x \sim a$ for all $x \in S$.

Definition. Let X be a partially ordered set.

(a) An element $x \in X$ which is comparable to every other element of X and satisfies $x \ge y$ for all $y \in X$ is the **largest element** of the set.

(b) An element $x \in X$ which is comparable to every other element of X and satisfies $x \leq y$ for all $y \in X$ is the **smallest element** of the set.

In some cases, we only care that an element be "bigger than" or "smaller than" elements to which it is comparable.

Definition. Let X be a partially ordered set. If an element x satisfies $x \ge y$ for all y to which it is comparable, then x is a **maximal element**. Likewise, if an element x satisfies $x \le y$ for all y to which it is comparable, then x is a **minimal element**.

Note that a largest or smallest element, if it exists, is unique. On the other hand, there may be many maximal or minimal elements.

Example. Define a relation \sim on \mathbb{R} by

$$x \sim y$$
 means $x^3 - 4x \leq y^3 - 4y$.

Check each axiom for a partial order. If the axiom holds, prove it. If the axiom does not hold, give a specific counterexample.

 $x^3 - 4x \le x^3 - 4x$ for all $x \in \mathbb{R}$, so $x \sim x$ for all $x \in \mathbb{R}$. Therefore, \sim is reflexive.

Suppose $x \sim y$ and $y \sim x$. Is is true that x = y?

 $2 \sim -2$, since $2^3 - 4 \cdot 2 \leq (-2)^3 - 4 \cdot (-2)$. Likewise, $-2 \sim 2$, since $(-2)^3 - 4 \cdot (-2) \leq 2^3 - 4 \cdot 2$. But $2 \neq -2$, so \sim is not antisymmetric.

Finally, suppose $x \sim y$ and $y \sim z$. This means that $x^3 - 4x \leq y^3 - 4y$ and $y^3 - 4y \leq z^3 - 4z$. Hence, $x^3 - 4x \leq z^3 - 4z$. Therefore, $x \sim z$, so \sim is transitive. \Box

Example. Define a relation \sim on \mathbb{R}^2 by

$$(a,b) \sim (c,d)$$
 means $|ab| \ge |cd|$.

Check each axiom for a partial order. If the axiom holds, prove it. If the axiom does not hold, give a specific counterexample.

Since $|ab| \ge |ab|$ for all $(a, b) \in \mathbb{R}^2$, it follows that $(a, b) \sim (a, b)$ for all $(a, b) \in \mathbb{R}^2$. Therefore, \sim is reflexive.

 $(1,2) \sim (-1,2)$, since $|1 \cdot 2| \ge |(-1) \cdot 2|$. Likewise, $(-1,2) \sim (1,2)$, since $|(-1) \cdot 2| \ge |1 \cdot 2|$. However, $(1,2) \ne (-1,2)$. Therefore, \sim is not antisymmetric.

Finally, suppose $(a, b) \sim (c, d)$ and $(c, d) \sim (e, f)$. Then $|ab| \ge |cd|$ and $|cd| \ge |ef|$. Hence, $|ab| \ge |ef|$. Therefore, $(a, b) \sim (e, f)$. Hence, \sim is transitive. \Box

Definition. A relation \sim on a set X is a **total order** if:

(a) (Trichotomy) For all $x, y \in X$, exactly one of the following holds: $x \sim y, y \sim x$, or x = y.

(b) (Transitivity) For all $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

The usual less than relation \langle is a total order on \mathbb{Z} , on \mathbb{Q} , and on \mathbb{R} . Likewise, you can use the total order relation on \mathbb{Z} to define a lexicographic order on $\mathbb{Z} \times \mathbb{Z}$ which is a total order. Specifically, define a total order \sim on $\mathbb{Z} \times \mathbb{Z}$ as follows: $(x_1, y_1) \sim (x_2, y_2)$ means that

(a) $x_1 < x_2$, or

(b) $x_1 = x_2$ and $y_1 < y_2$.

You can check that the axioms for a total order hold.

Example. Consider the relation defined by the graph below:

Thus, x < y means that $x \neq y$, and there is an upward path of segments from x to y.

Is this relation a total order? You can check cases, using the picture, that the relation is transitive. (This amounts to saying that if there's an upward path from x to y and one from y to z, then there's such a path from x to z. In fact, if you define a relation using a graph in this way, the relation will be transitive.)

However, this graph does not define a total order. Trichotomy fails for d and e, since d < e, e < d, and d = e are all false. \Box

Definition. Let S be a partially ordered set, and let T be a subset of S.

(a) $s \in S$ is an **upper bound** for T if $s \ge t$ for all $t \in T$.

(b) $s \in S$ is a **lower bound** for T if $s \leq t$ for all $t \in T$.

Thus, an upper bound for a subset is an element which is greater than or equal to everything in the subset; a lower bound for a subset is an element which is less than or equal to everything in the subset. Note that unlike the **largest element** or **smallest element** of a subset, upper and lower bounds don't need to belong to the subset.

For instance, consider the subset T = (0, 1] of \mathbb{R} . 2 is an upper bound for T, since $2 \ge x$ for all $x \in T$. 1 is also an upper bound for T. Note that 2 is not an element of T while 1 is an element of T. In fact, any real number greater than or equal to 1 is an upper bound for T.

Likewise, any real number less than or equal to 0 is a lower bound for T.

T has a largest element, namely 1. It does not have a smallest element; the obvious candidate 0 is not in T.

This example shows that a subset may have many — even infinitely many — upper or lower bounds. Among all the upper bounds for a set, there may be one which is *smallest*.

Definition. Let S be a partially ordered set, and let T be a subset of S. An element $s_0 \in S$ is a **least** upper bound for T if:

(a) s_0 is an upper bound for T.

(b) If s is an upper bound for T, then $s_0 \leq s$.

The idea is that s_0 is an upper bound by (a); it's the **least** upper bound, since (b) says s_0 is smaller than any other upper bound.

Definition. Let S be a partially ordered set, and let T be a subset of S. An element $s_0 \in S$ is a greatest lower bound for T if:

- (a) s_0 is an lower bound for T.
- (b) If s is an lower bound for T, then $s_0 \ge s$.

The concepts of least upper bound and greatest lower bound come up often in analysis. I'll give a simple example.

Example. Determine the least upper bound and greatest lower bound for the following sets (if they exist):

- (a) The subset S = (0, 1] of \mathbb{R} .
- (b) The subset $T = (0, +\infty)$ of \mathbb{R} . (Thus, T is the positive real axis, not including 0.)
- (a) Any real number greater than or equal to 1 is an upper bound for T. Among the upper bounds for S, it's clear that 1 is the *smallest*, so 1 is the *least upper bound* for S.
- Likewise, any real number less than or equal to 0 is a lower bound for S. But among the lower bounds for S, it's clear that 0 is the *largest*, so 0 is the *greatest lower bound* for S.

Notice that $1 \in S$, but $0 \notin S$. The least upper bound and greatest lower bound may be contained, or not contained, in the set. \Box

(b) T has no least upper bound in \mathbb{R} ; in fact, T has no upper bound in \mathbb{R} . 0 is the greatest lower bound for T in \mathbb{R} . \Box