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Set Algebra

Mathematicians tend to prove results about sets as they need them, rather than memorizing and using
a large collection of rules. There are a lot of rules involving sets; you’ll probably become familiar with the
most important ones simply by using them a lot.

Usually you can check informally (for instance, by using a Venn diagram) whether a rule is correct; if
necessary, you should be able to write a proof. In most cases, you can give a proof by going back to the
definitions of set contructions in terms of elements.

Once you've compiled a collection of known facts about sets, you can use those facts to prove other
facts.

There are also various styles for these proofs. You can write a proof formally, as a series of implications
or double implications.

Alternatively, you can give a proof that relies more on words.

Example. (Distributivity) Let A, B, and C be sets. Prove that

AN(BUC)=(ANB)U(ANCQC).

If X and Y are sets, X =Y if and only if for all z, z € X if and only if x € Y.
First, I'll give a formal proof, written as a series of double implications:

r€e€AN(BUC) < ze€eAAze(BUQ) Definition of N
< z€AN(xeBvzel) Definition of U
< (xe ANz eB)V(xe ANz € C) Distributivity of A over V
<~ (z€eAnB)V(zxe AnC) Definition of N
< z€(ANB)U(ANCQC) Definition of U

I’'ve shown that
r€e€AN(BUC) <z (ANB)UANC).

By definition of set equality, this proves that AN (BUC)=(ANB)U(ANC). O

The idea of the proof was to reduce everything to statements about elements. Then I used logical rules
to manipulate the element statements.

Here’s an alternative proof written with more words. I'll prove AN (BUC) = (AN B)U(ANC) by
showing that each set is contained in the other.

First, I'll show that AN(BUC) C (ANB)U(ANC). Let x € AN(BUC). By definition of intersection,
this means that x € A and x € BUC.

Now z € BUC means, by definition of union, x € B or x € C. Combining this with the fact that = € A,
this means that either x € A and z € B,or z € A and z € C.

By definition of intersection (twice), this means that either z € AN B or x € ANC. And by the
definition of union, this means that z € (AN B)U (AN C).

I've shown that if x € AN (BUC), then z € (AN B)U (ANC). By definition of subset, AN(BUC) C
(ANB)U(ANC).

Next, I'll show that (ANB)U(ANC) C AN(BUC). Let z € (ANB)U(ANC). By definition of union,
re€ANBorxe ANC.

In the first case, € AN B. By definition of intersection, this means x € A and « € B. Now by
constructing a disjunction, x € B gives x € B or z € C, and by definition of union, I get x € BUC.

Since I know = € A, the definition of intersection gives x € AN (BUC).

In the second case, x € AN C. By definition of intersection, this means z € A and z € C. Now by
constructing a disjunction, x € C gives x € B or x € C, and by definition of union, I get x € BUC.
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Since I know = € A, the definition of intersection gives x € AN (BUC).

Since in both cases I have & € AN(BUC'), I have shown that if z € (ANB)U(ANC), then = € AN(BUC).
By definition of subset, this means that (AN B)U(ANC) Cc An(BUCQC).

Finally, since I've shown that AN (BUC) and (AN B)U (ANC) are each contained in the other, they
must be equal: AN (BUC)=(ANB)U(ANC). O

You can see that the first proof is shorter, but sometimes shorter proofs require more thinking to
understand: The proof is shorter because the reasoning is compressed. The second proof is much longer, but
maybe the words make more sense to you.

Note: It’s also true that
AUBNC)=(AUB)N(AUCQC).

Example. (DeMorgan’s Law) Let A and B be sets. Prove that
AUB=ANB and ANB=AUB.

T’ll just prove the first statement; the second is similar. This proof will illustrate how you can work with
complements. I’ll use the logical version of DeMorgan’s law to do the proof.
Let = be an arbitrary element of the universe.

xre€AUB + x¢ AUB Definition of complement
< —(ze AUB) Definition of ¢
< —(reAvzxzeB) Definition of U
< —(reA)A-(xeB) DeMorgan’s law
< (r¢A)A(x¢B) Definition of ¢
< (xeA)A(zeB) Definition of complement
< w€ANB Definition of N
a

Therefore, AUB = AN B.

Example. Let A and B be sets. Prove that AN B C A.

This example will show how you prove a subset relationship.

By definition, if X and Y are sets, X C Y if and only if for all z, if x € X, then z € Y.

Take an arbitrary element . Suppose x € AN B (conditional proof). T want to show that = € A.

x € AN B means that z € A and = € B, by definition of intersection. But z € A and x € B implies
z € A (decomposing a conjunction), and this is what I wanted to show. Therefore, AN B C A.

By the way, you usually don’t write the logic out in such gory detail. The proof above could be shortened
to the following.

x € AN B means that x € A and = € B, so in particular x € A. Therefore, AN B C A.

The “in particular” substitutes for decomposing the conjunction. 0O

The procedure I've followed is so common that it’s worth pointing it out: To prove a subset relationship
(an inclusion) X C Y, take an arbitrary element of X and prove that it must be in Y.

In the next example, I’ll need the following facts from logic. First, PV =P is a tautology:
P -P PV -P
T F T
F T T




Also, P A (a tautology) < P
P a tautology P A (a tautology)
T T T
F T F

In effect, this means that I can drop tautologies from “and” statements. I'll just call this “Dropping
tautologies” in the proof below.

Example. Prove that (A — B)U(B—-A)=(AUB) - (ANB).

€(A-B)U ( —A) &
( ) Vze(B-—A) + Definition of union
(x € A Az ¢ B)V(zeBAz ¢ A) « Definition of complement
[reAV(reBAz ¢ ANz ¢ BV(xe BAx ¢ A)] + Distributivity
(xe AVeeB)AN(x e AVe g A)|AN(x¢ BVezeB)AN(r ¢ BVr¢ A+ Distributivity
(xeAvzeB)AN(z ¢ BVva¢gA < Dropping tautologies
(xe AVvzeB)AN(—~x € BV € A)+ Definition of “not in”
(xe AVzeB)A~(x € BAxz € A) & DeMorgan
(xe AUB)A=(x € ANB) < Definition of union and
intersection
€ (AUB)—-(ANB) Definition of complement

Therefore, (A— B)U(B—-—A)=(AUB)—(ANB). O

Example. Let A be a set. Prove that

AUD=A and AN =0.

This example will show how you can deal with the empty set.
To prove AU () = A, let x be an arbitrary element of the universe. First, by definition of U,

r€eAUD <+ (z € A)V (z €).

I'll show that [(z € A) V (x € 0)] +> (x € A). To prove P +> @, I must prove P — @ and Q — P.

First, if € A, then (z € A) V (z € 0) (constructing a disjunction).

Next, suppose (z € A) V (z € (). The second statement x € ) is false for all x, by definition of (). But
the V-statement is true by assumption, so z € A must be true by disjunctive syllogism. This proves that if
(x e A)V (z €0), then z € A.

This completes my proof that [(x € A) V (z € 0)] + (z € A). So

zx€AUD < (zxeA)V(xel) Definition of U
—~ z€A Proved above

Therefore, AU} = A.

To prove that AN @ = (), I must prove that for all z, z € AN if and only if z € (.
As usual, z be an arbitrary element of the universe. To prove x € AN if and only if x € (), I must
prove that the following implications:

(xeANP)—wz€d and z€0— (x e AND)
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I'll do this by showing that, in each case, the antecedent (i.e. the “if” part of the statement) is false —
since by basic logic, if P is false, then P — @ is true.
For the first implication, consider the statement z € A N ). By definition of intersection,

reEAND < (xe Anz ).

Now z € () is false, by definition of the empty set. Therefore, the conjunction x € AAx € () is also false.
Hence, z € AN is false.

It follows that the implication x € ANQ — z € ( is true, because the “if” part is false.

Likewise, the second implication z € § — (z € AN Q) is true because = €  is false, by definition of the
empty set.

Since both implications are true, x € AN if and only if z € f. And this in turn proves that ANQ = 0.
0
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