C++ Code Snippets

PART I: Inputs for Arduino IDE/Teensy 3.2

John R. Wright, Jr., PhD, CSTM, CLSSGB, CSCE, F.ATMAE
AENG 467, Mobile Robotics
int SharpIR = A0; // Set variable as integer & tell where connected on board
int val = 0; // Set variable as integer and set to zero

void setup() {
 pinMode(SharpIR, INPUT); // Set the pin direction to input
 Serial.begin(9600); // Establish serial baud rate
 while(!Serial); // Wait until good serial connection is established
}

void loop() {
 val = analogRead(SharpIR); // Read value from sensor
 Serial.println(val); // Print to monitor
 delay(200); // Wait 200ms
Line Tracking Sensor

//John Wright 2017
//January 18, 2017
//Same code as used with SharpIR

int LineTrackS1 = A0; // Where sensor is connected on board
int val = 0; // Set val to zero

void setup() {
 pinMode(LineTrackS1, INPUT); // Set the pin direction to input
 Serial.begin(9600); // Establish serial baud rate
 while(!Serial); // Wait until good serial connection is established
}

void loop() {
 val = analogRead(LineTrackS1); // Read value from sensor
 Serial.println(val); // Print to monitor
 delay(200); // Wait 200ms
}
Line Tracking Sensor

https://youtu.be/UiAZhpYzYKs
Flame Sensor w/LED
(input controlling an output)

//John Wright 2017
//January 18, 2017
//Same code as used with SharpIR

int FlameS1 = A0; // Where sensor is connected on board
int val = 0; // Set val to zero

void setup() {
 pinMode(FlameS1, INPUT); // Set the pin direction to input
 pinMode(13, OUTPUT); // Set the direction of pin 13 to output
 Serial.begin(9600); // Establish serial baud rate
 while(!Serial); // Wait until good serial connection is established
}
Flame Sensor w/LED
(input controlling an output)

```cpp
void loop() {
  val = digitalRead(FlameS1);  // Read value from sensor
  Serial.println(val);  // Print to monitor
  delay(200);  // Wait 200ms
  if (val < 1) {
    digitalWrite(13, HIGH);  // Turns on onboard LED if flame detected
    delay(5000);  // Wait 5 sec so we can see the detection
  }
  else {
    digitalWrite(13, LOW);  // Turns off on-board LED if flame not detected
  }
}
```
Flame Sensor

https://youtu.be/P8fgrlDGHE8
What is a Library?

“In the C++ programming language, the C++ Standard Library is a collection of classes and functions, which are written in the core language and part of the C++ ISO Standard itself.

The C++ Standard Library provides several generic containers, functions to utilize and manipulate these containers, function objects, generic strings and streams (including interactive and file I/O), support for some language features, and functions for everyday tasks such as finding the square root of a number.

What is a Library?

The C++ Standard Library also incorporates 18 headers of the ISO C90 C standard library ending with ".h", but their use is deprecated.

No other headers in the C++ Standard Library end in ".h".

Features of the C++ Standard Library are declared within the std namespace.”

What is a Header File?

Think of both like this (Disclaimer: this is a really high-level analogy ;) ..

- The header is a phone number you can call, while...
- ...the library is the actual person you can reach there!

It's the fundamental difference between "interface" and "implementation"; the interface (header) tells you how to call some functionality (without knowing how it works), while the implementation (library) is the actual functionality.

Note: The concept is so fundamental, because it allows you flexibility: you can have the same header for different libraries (i.e. the functionality is exactly called in the same way), and each library may implement the functionality in a different way. By keeping the same interface, you can replace the libraries without changing your code.

And: you can change the implementation of the library without breaking the calling code!

4 Pin Sonar

4 Pin Sonar

1) Download and install library onto computer under the Arduino Library Folder

2) Link Library in Arduino

 SKETCH, IMPORT LIBRARY
#include <HCSR04.h>

// Code & Library from Patton Robotics
// Must get library file from Patton Robotics and install - point to folder on your computer
// Sketch, Import Library

HCSR04 Echo1(7,8); // New instance of the class
 // HCSR04(int EchoPin, int TrigPin)

void setup() {
 Serial.begin(9600); // Launch Serial
}
void loop() {
 Echo1.ReadEchoCM(); // Get Data in Centimeters
 delay(10); // Give a chance to establish a new low on the trigger
 // delay likely not needed, I just play it safe
 Echo1.ReadEchoInches(); // Get Data in Inches
 Serial.print("CM = ");
 Serial.println(Echo1.CMs);
 Serial.println(" ");
 delay(500);
}
4 Pin Sonar

CAUTION!!!!

- Pin colors do not reflect + & -
 - Red and Black may mean different pins
 - Be very careful with the wiring!
 - Two pins will be signals (Trig & Echo)
#include <Ping.h> // Library function for Ping Sonar
Ping ping = Ping(0); // Tells us what input the Ping Sonar is wired to

void setup() {
 pinMode(13, OUTPUT); // Sets pin 13 to use as an output for on board LED
 Serial.begin(115200); // Sets baud rate for the serial connection
}
void loop() {
 ping.fire(); // Pulses Ping Sonar
 Serial.print(ping.inches()); // Prints output/result of Ping Sonar to Screen
 Serial.println(); // Sets a return so data scrolls down instead of across the
 // screen
 delay(100); // Delays 100ms

 if (ping.inches() < 10) {
 digitalWrite(13, HIGH); // Turns on on-board LED if object less than 10 inches away
 }
 else {
 digitalWrite(13, LOW); // Turns off the on-board LED if object >= 10 inches away
 }
}
Good Luck! Time to “Code Hard!”

https://www.youtube.com/watch?v=b-CroEWwaTk