Introduction to the OpenMV H7 Machine Vision Unit

Detecting Color with MicroPython

Ethan Bressler, CTM
John R. Wright, Jr., PhD, CSTM, CLSSGB, CSCE, F.ATMAE
AENG 467 Mobile Robotics
Millersville University
Most Popular Programming Languages 1965 - 2019

- https://www.youtube.com/watch?v=Og847HVwRSI

What is Python & Why Learn it?

- https://www.youtube.com/watch?v=Y8Tko2YC5hA

The BoD

- https://www.youtube.com/watch?v=Wpx6XnankZ8
Overview of the OpenMV H7

- OpenMV is a vision system that can be used in conjunction with microcontrollers.
- Capable of color tracking, face detection, QR code detection, shape recognition and more.
- Uses MicroPython and the OpenMV IDE.
OpenMV Cam H7

- Runs on 5 VDC, can be powered by USB, JST, or GND and VIN pins.
- 10 Output pins that run 3.3-5VDC
OpenMV Cam H7 - OV7725

All pins are 5V tolerant\(^1\) with a 3.3V output
All pins can sink or source up to 25 mA\(^2\)
\(^1\) P6 is not 5V tolerant in ADC or DAC mode
\(^2\) Up to 120mA in total between all pins

Max current used wo/ µSD card < 150 mA
Max current used w/ µSD card < 250 mA

Micro SD Slot
SD < 2GB Max
SDHC < 32GB Max

Peripheral / Timers
- UART1 1D2
- UART2 1D1
- CAN 0
- CAN 1
- GPIO
- SPI1 MOSI
- SPI1 MISO
- SPI1 SCK
- SPI2 MOSI
- SPI2 MISO
- SPI2 SCK
- SPI3 MOSI
- SPI3 MISO
- SPI3 SCK
- UART 3 TX
- UART 3 RX
- DAC
- ADC
- PA5
- PA6
- 3.3V Rail (250 mA supply Max)

CPU Name
- PB15 PD0
- PB14 PD1
- PB13 PD2
- PB12 PD3
- PB11 PD4
- PB10 PD5
- PB9 PD6
- PD14
- PD13
- PD12
- PD11
- PD10
- PD9

Peripheral / Timers
- Reset (Connect to GND to reset)
- BOOT 0 (Connect to 3.3V for DFU mode)
- Frame Sync (use to frame sync cams)
- P9 PD14
- P8 PD13
- P7 PD12
- VIN (3.6V - 5V)
- GND Rail
Wiring Diagram

Passing a bit – works better with a common power supply as shown.
Powering the OpenMV H7 Camera from the JST Connector

https://www.amazon.com/gp/product/B07RJG81HX/ref=ppx_yo_dt_b_search_asin_image?ie=UTF8&psc=1

https://www.amazon.com/gp/product/B01CVJC8I4/ref=ppx_yo_dt_b_search_asin_image?ie=UTF8&psc=1

https://openmv.io/collections/products

JST Port
Powering the OpenMV H7 Camera from the JST Connector

- Be careful when using the JST connector as the positive is on the left (OpenMV Cam H7)
- Male Connector that we have (MU) will connect the black wire to + instead of red.

https://www.amazon.com/gp/product/B07RJG81HX/ref=ppx_yo_dt_b_search_asin_image?ie=UTF8&psc=1
OpenMV IDE

- To install the OpenMV IDE use this link and download the correct IDE for your computer.

- https://openmv.io/pages/download/
OpenMV IDE

- Connect and disconnect to the camera using the Connect button.
- Begin running the camera with the play button.
Colors

- Monitor screen

- To select a color, make a rectangle around the desired color.

- Use the LAB graphs to get values for the color thresholds.
Code Snippet for MicroPython (Color Detection)

```python
# Vision Code - By: Lansmith (Actually Dr. Wright but you know) - Tue Sep 28 2021
# This code was adapted from examples given in the OpenMV IDE on color tracking and outputs.
# This example shows off single color code tracking using the OpenMV Cam.
# A color code is a blob composed of two or more colors.
# The example below will only track colored objects which have both the colors below in them.
7
import sensor, image, time, math, pyb
8
from pyb import Pin
9
from pyb import Pin
10
thresholds = [(15, 35, 40, 80, 20, 40),
11
(30, 50, -64, -8, -32, 32)]
12
sensor.reset()
13
sensor.set_pixformat(sensor.RGB565)
14
sensor.set_framesize(sensor.QVGA)
15
sensor.skip_frames(time=2000)
16
sensor.set_auto_gain(False) # must be turned off for color tracking
17
sensor.set_auto_whitebal(False) # must be turned off for color tracking
18
clock = time.clock()
19
# Only blobs that with more pixels than "pixels_threshold" and more area than "area_threshold" are
20 # returned by "find_blobs" below. Change "pixels_threshold" and "area_threshold" in
21 # if you change the camera resolution. "merge=True" must be set to merge overlapping color blobs for color codes.
22
while(True):
23    clock.tick()
24    img = sensor.snapshot()
25     for blob in img.find_blobs(thresholds,
26          pixels_threshold=100, area_threshold=100, merge=True):
27         if blob.code() == 1: # r/g code = (1 << 1) | (1 << 0)
28             # 1=RED 2=GREEN
30             p.high() # or p.value(1) to make the pin high (3.3V)
31         if blob.code() == 2: # r/g code = (1 << 1) | (1 << 0)
32             # 1=PURPLE 2=BLUE
33             p = pyb.Pin("P0", pyb.Pin.OUT_PP)
34             p.low() # or p.value(0) to make the pin low (0V)
35```
Code Snippet for MicroPython (Color Detection)

```python
Color Tracking Thresholds (L Min, L Max, A Min, A Max, B Min, B Max) The below thresholds track in general red/green things. You may wish to tune them... First is generic_red_thresholds. Second is generic green.

thresholds = [(15, 35, 40, 80, 20, 40), (30, 50, -64, -8, -32, 32)]
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False) # Must be turned off for color tracking
sensor.set_auto_whitebal(False) # Must be turned off for color tracking
clock = time.clock()
```
# Only blobs that with more pixels than "pixel_threshold" and more area than "area_threshold" are returned by "find_blobs" below. Change "pixels_threshold" and "area_threshold" if you change the camera resolution. "merge=True" must be set to merge overlapping color blobs for color codes.

```python
while(True):
 clock.tick()
 img = sensor.snapshot()
 for blob in img.find_blobs(thresholds, pixels_threshold=100, area_threshold=100, merge=True):
 if blob.code() == 1: #1==RED
 p.high() # or p.value(1) to make the pin high (3.3V)
 if blob.code() == 2: #2==GREEN
 p.low() # or p.value(0) to make the pin low (0V)
```
Teensy Code (C++) Code Snippet for Reading a Bit passed by the H7 Cam

```cpp
const int Cam = 3; //Where sensor is connected on board
int val = 0; //Set val to zero (initialized value)

void setup() {
 pinMode(Cam, INPUT); //Set the pin direction to input
 Serial.begin(9600); //Establish serial baud rate
}

void loop() {
 val=digitalRead(Cam); //Read value from sensor
 Serial.println(val); //Print to monitor
 delay(1000); //Wait 200ms
}
```
Tips

- MicroPython uses indentations as part of the syntax, unlike C++.

- The threshold values in the MicroPython code can be changed to match different colors.

- To save code to the camera click Tools, Save open script to OpenMV H7 Cam.
References

- https://docs.openmv.io/openmvlc/tutorial/overview.html
- https://openmv.io/products/openmv-cam-h7