
ENGINEERING PRINCIPLES
(PROGRAMMING & ROBOTICS)

John R. Wright, Jr., Ph.D., CSTM, CLSSGB, CSCE, F.ATMAE

AENG 101 Introduction to Engineering

Department of Applied Engineering, Safety, & Technology (AEST)

OUTLINE

• History of the microcontroller
• What is an IDE?

What is a Microcontroller?

High-level languages

• Variables
• Sensors / inputs
• Functions
• Libraries
• Servo motor control / outputs
• If Statements

Code Fundamentals (C++)

Algorithms, Pseudocode, & Code

Flowcharts

Real-time I/O

WHAT IS A MICROCONTROLLER?

BRIEF HISTORY OF THE
MICROCONTROLLER

• In 1971, the first microcontroller was invented by two engineers at Texas
Instruments, according to the Smithsonian Institution.
• Gary Boone and Michael Cochran created the TMS 1000, which was a 4-bit microcontroller with built-

in ROM and RAM.

• The same year that the microprocessor was invented at Intel

• The microcontroller was used internally at TI in its calculator products from 1972
until 1974, and was refined over the years.

• In 1974, TI offered the TMS 1000 for sale to the electronics industry. The TMS 1000
was available in various configurations of RAM and ROM sizes.

http://www.ehow.com/info_10018768_history-microcontroller.html

http://www.ehow.com/info_10018768_history-microcontroller.html

BRIEF HISTORY OF THE
MICROCONTROLLER

• During the 1990s, microcontrollers with electrically erasable and programmable ROM (EEPROM)
memories, such as flash memory, became available.

• These microcontrollers could be programmed, erased and reprogrammed using only electrical
signals.

• Prior to the electrically reprogrammable devices, microcontrollers often required specialized
programming and erasing hardware, which required that the device be removed from its circuit,
slowing software development and making the effort more expensive.

• With this limitation removed, microcontrollers were able to be programmed and
reprogrammed while in a circuit so devices with microcontrollers could be upgraded with new
software without having to be returned to the manufacturer. Many current microcontrollers,
such as those available from Microchip and Atmel, incorporate flash memory technology.

http://www.ehow.com/info_10018768_history-microcontroller.html

http://www.ehow.com/info_10018768_history-microcontroller.html

https://www.makerfocus
.com/products/2pcs-
nano-v3-0-atmega328p-
microcontroller-board-
for-arduino

ARDUINO
IDE SET-UP

WIRING TO YOUR
MICROCONTROLLER

(USING THE CARRIER BOARD)

• Sensors are 3 or 4-pin.

• 3-pin sensors have

+V ---- connects to the +5V (red row of pins on the
carrier board)

G (Gnd) ---- connects to the G (black row of pins on
the carrier board)

S (Signal) ---- connects to the S (blue row of pins on
the carrier board)

• 4-pin sensors like your sonar have an extra signal pin

• A0, A1, A2.. A7 are for analog input devices (8)

• 2-13 are for digital inputs and outputs (12)

• 0 & 1 are for transmit/receive serial devices like LCD
screens

https://www.youtube.com/watch?v=nFbWXuR_2Ow

https://www.youtube.com/watch?v=nFbWXuR_2Ow

WHAT IS AN IDE?

• IDE = Integrated Development Environment

• An integrated development environment (IDE) is a software
suite that consolidates the basic tools developers need to write
and test software.

• Typically, an IDE contains a code editor,
a compiler or interpreter and a debugger that the developer
accesses through a single graphical user interface (GUI).

• An IDE may be a standalone application, or it may be included as
part of one or more existing and compatible applications.
http://searchsoftwarequality.techtarget.co/definition/integrated-development-environment

• JAVA uses Eclipse as its IDE

• We use the Arduino IDE to Program the Arduino with C++

https://diy.waziup.io/sensors/introduction_Arduino_IDE/intro_Arduino_IDE.html

http://whatis.techtarget.com/definition/compiler
http://whatis.techtarget.com/definition/interpreted-script
http://searchwindevelopment.techtarget.com/definition/GUI
http://searchsoftwarequality.techtarget.co/definition/integrated-development-environment

WHAT IS A HIGH-LEVEL LANGUAGE?

https://www.mrdfinch.com/high-and-low-level-languages.html

https://www.mrdfinch.co
m/high-and-low-level-
languages.html

https://www.mrdfinch.com/high-and-low-level-languages.html

CODE FUNDAMENTALS

(C++ SKETCH FORMAT /
ORGANIZATION)

• Initialization Section (top)

• Setup Section (middle)

• Main Program Section (bottom)

int countUp = 0; //creates a variable integer called 'countUp’

void setup() {

Serial.begin(9600); // use the serial port to print the number

}

void loop() {

countUp++; //Adds 1 to the countUp int on every loop

Serial.println(countUp); // prints out the current state of countUp

delay(1000);

}

https://www.arduino.cc/reference/en/language/variables/data-types/int/

CODE FUNDAMENTALS

(COMMON VARIABLE TYPES)

• Char - A data type used to store a character value. Character
literals are written in single quotes, like this: 'A' (for multiple
characters - strings - use double quotes: "ABC")

• Byte - A byte stores an 8-bit unsigned number, from 0 to 255

• Int - Integers are your primary data-type for number storage. On
the Arduino Uno (and other ATmega based boards) an int stores a
16-bit (2-byte) value. This yields a range of -32,768 to 32,767

https://www.arduino.cc/en/Reference/VariableDeclaration

https://www.arduino.cc/en/Reference/Char
https://www.arduino.cc/en/Reference/Byte
https://www.arduino.cc/en/Reference/Int

CODE FUNDAMENTALS

(OTHER VARIABLE TYPES)
• Unsigned int - On the Uno and other ATMEGA based boards, unsigned ints (unsigned

integers) are the same as ints in that they store a 2 byte value. Instead of storing negative
numbers however they only store positive values, yielding a useful range of 0 to 65,535

• Long - Long variables are extended size variables for number storage, and store 32 bits (4
bytes), from -2,147,483,648 to 2,147,483,647

• Float - Datatype for floating-point numbers, a number that has a decimal point. Floating-
point numbers are often used to approximate analog and continuous values because they
have greater resolution than integers. Floating-point numbers can be as large as
3.4028235E+38 and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes) of
information

• Double - Double precision floating point number. On the Uno and other ATMEGA based
boards, this occupies 4 bytes. That is, the double implementation is exactly the same as the
float, with no gain in precision.On the Arduino Due, doubles have 8-byte (64 bit) precision.

https://www.arduino.cc/en/Reference/VariableDeclaration

https://www.arduino.cc/en/Reference/UnsignedInt
https://www.arduino.cc/en/Reference/Long
https://www.arduino.cc/en/Reference/Float
https://www.arduino.cc/en/Reference/Double

CODE FUNDAMENTALS

(HOW TO DECLARE A VARIABLE)

• How to Declare a Variable (do this at the top of your code - global):

int var = val

where int = integer

var = variable

val = what you are assigning to the variable (initial number or pin)

• Global vs. Local

• Global – top of the code

• Local – inside a function

EXAMPLE C++ CODE

int countUp = 0; // creates a variable integer called 'countUp’

void setup() {

Serial.begin(9600); // use the serial port to print the number

}

void loop() {

countUp++; // adds 1 to the countUp int on every loop

Serial.println(countUp); // prints out the current state of countUp

delay(1000);

}

CODE FUNDAMENTALS
(ADDING IR SENSORS)

CODE FUNDAMENTALS
(SETTING THE DIRECTION OF THE I/O)

• If having trouble, Use PinMode Command to set
the direction of the I/O in the Void setup()
Function

• Arduino (Atmega) pins default to inputs, so
they don't need to be explicitly declared
as inputs with pinMode() when you're using
them as inputs. Pins configured this way are said
to be in a high-impedance state.
https://www.arduino.cc/en/Tutorial/Foundations/Di
gitalPins

• If using a library to control an output, PinMode
may not be necessary

https://www.arduino.cc/en/Tutorial/Foundations/DigitalPins

CODE
FUNDAMENTALS
(BLINKING YOUR
ON-BOARD LED)

CODE FUNDAMENTALS (LIBRARIES)

• The Arduino environment can be extended through the use of
libraries, just like most programming platforms.

• Libraries provide extra functionality for use in sketches, e.g.
working with hardware or manipulating data. To use a library in a
sketch, select it from Sketch > Import Library.

• A number of libraries come installed with the IDE, but you can also
download or create your own.

https://www.arduino.cc/en/reference/libraries

CODE FUNDAMENTALS (ADDING A SONAR SENSOR)

http://pattonrobotics.co
m/products/ultrasonic-
sensor-and-cables

1) Download and
install library
onto computer
Library Folder
under Arduino
first –-- drop
the
downloaded
folder there

2) Link Library in
Arduino

SKETCH,
IMPORT
LIBRARY

http://pattonrobotics.com/products/ultrasonic-sensor-and-cables

CODE FUNDAMENTALS

(LIBRARIES FOR MOTOR CONTROL)

CODE FUNDAMENTALS (IF STATEMENTS – PULLING IT
ALL TOGETHER)

V
I
D
E
O

CODE FUNDAMENTALS (FUNCTIONS)

• A function is simply a subroutine.

• Segmenting code into functions allows a programmer to create modular pieces of
code that perform a defined task and then return to the area of code from which
the function was "called". The typical case for creating a function is when one
needs to perform the same action multiple times in a program.

• For programmers accustomed to using BASIC, functions in Arduino provide (and
extend) the utility of using subroutines (GOSUB in BASIC).

• There are two required functions in an Arduino sketch, setup() and loop(). Other
functions must be created outside the brackets of those two functions.

https://www.arduino.cc/en/Reference/FunctionDeclaration

CODE FUNDAMENTALS (FUNCTIONS)

• Standardizing code fragments into functions has several advantages:
• Functions help the programmer stay organized. Often this helps to

conceptualize the program.
• Functions codify one action in one place so that the function only has to be

thought out and debugged once.
• This also reduces chances for errors in modification, if the code needs to be

changed.
• Functions make the whole sketch smaller and more compact because sections

of code are reused many times.
• They make it easier to reuse code in other programs by making it more

modular, and as a nice side effect, using functions also often makes the code
more readable.

https://www.arduino.cc/en/Reference/FunctionDeclaration

https://www.youtube.co
m/watch?v=DrDB4oYtJ
rA&t=1s

https://www.youtube.com/watch?v=DrDB4oYtJrA&t=1s

https://www.youtube.c
om/watch?v=SCa_QRi
mtLI

https://www.youtube.com/watch?v=SCa_QRimtLI

ALGORITHMS, PSEUDOCODE, AND CODE

• An Algorithm is your plan/idea (how to solve a problem)

• May be expressed in many different ways

• Mathematical Expression

• Pseudo Code (written text)

• Pseudocode is the written expression of the Algorithm

• It is simply a description on how your program should work in plain English or another language

• Code – this is what you program (Syntax) to enact your algorithms

• Other notes:

• Some people are great at code

• Some are great at developing algorithms

• Innovation really comes great algorithms!

• Optimization comes from great code!

WHAT IS A FLOWCHART?

• Flowcharts allow one to see a pictorial
representation of the process.

• They make it easier to understand the
process at hand!

• MS Visio is a great tool for developing
flowcharts as you can easily drag and
drop the symbols.

BASIC
FLOWCHART

SYMBOLS

https://www.youtube.com/watch?v=2rZY8iX8Mdw&t=2s

https://www.youtube.com/watch?v=2rZY8iX8Mdw&t=2s

WHAT IS MEANT BY REAL-TIME I/O?

• Real-time I/O are programmed devices collect data
and provide data or commands to other devices
external to the computer.

• This is what separates a roboticist or controls
engineer from a computer scientist.

https://www.youtube.com/watch?v=wSsmNSqUrsw

https://www.youtube.com/watch?v=wSsmNSqUrsw

https://www.youtube.com/watch?v=z5_2xkOpVHU&t=2s

https://www.youtube.com/watch?v=z5_2xkOpVHU&t=2s

