
C++ Code Snippets
PART II: Outputs for

Arduino IDE/Teensy 3.2
John R. Wright, Jr., PhD, CSTM, CLSSGB, CSCE, F.ATMAE

AENG 467, Mobile Robotics

Relay
(Controlling an external output like the Fan)

// John Wright 2017
// January 19, 2017
// Controlling/cycling a Relay on and off

int Relay = 2; //Where device is connected on-board

void setup() {
pinMode(Relay, OUTPUT); //Set the pin direction to output

}

void loop() {
digitalWrite (2, HIGH); //Click relay coil on
delay (1000); //1 sec
digitalWrite (2, LOW); //Click relay coil off
delay (2000);

}

Relay
(Controlling an external output like the Fan)

https://youtu.be/y3j6EuRbGCY

https://youtu.be/y3j6EuRbGCY

Servo Motor
Reference: Ch 18, Chris Odom’s Vol 2 Book

“As you learned earlier in this chapter, most
servos have a minimum pulse width limit around 1.0ms and a maximum limit
around 2.0ms, although the actual minimum and maximum pulse widths may
vary between the various servo brands. Therefore, when programming servos
it is important to keep the range of the values sent to the analogWrite()
function between 127 and 255 , which corresponds to a pulse width of 1000μs
and 2000μs , respectively!”

Servo Motor via
analogWrite()

//Chris Odom, 2016

byte servoPin = 3; // For this sketch, the servo MUST be a in a PWM pin!

void setup() {
pinMode(servoPin, OUTPUT);

}

void loop() {
analogWrite(servoPin, 255); // Servo will spin CCW fast

}

Servo Motor via
digitalWrite()

/*
Chris Odom, 2016 Ch 18 Vol2
Edited and expanded by John Wright, 2017
because this module uses digitalWrite (not analogWrite) to
control the servos, you can attach the servos to ANY pins (not just PWM pins)!
*/

const int leftServo = 0;
const int rightServo = 1;

// servo direction constants (1000-2000 where 1500 is stop)
const int left_forward_fast = 2000; // CCW
const int left_backward_fast = 1000; // CW
const int right_forward_fast = 1000; // CW
const int right_backward_fast = 2000; // CCW
int x = 0;
int y = 0;

Servo Motor via
digitalWrite()

void setup() {
pinMode(leftServo,OUTPUT);
pinMode(rightServo,OUTPUT);

}
// This is your Main Program that is calling subroutines
void loop() {

forwardStepFast();
delay(100);
backwardStepFast();
delay(100);

}

Servo Motor via
digitalWrite()

From Chris Odems’s Ch 18 Vol 2 text

Servo Motor via
digitalWrite()

//**
// This is a subroutine for forward
//For-Loop below - see page 285 Vol 1

void forwardStepFast() {
for (int x = 0 ; x < 100 ; x++) {

servoMove(leftServo, left_forward_fast); //Calling another function/subroutine
servoMove(rightServo, right_forward_fast);
delay(20); // This value changes speed of motor, do not set < 20ms

}
}

Servo Motor via
digitalWrite()

//***
// This is a subroutine for backwards

void backwardStepFast() {
for (int y = 0 ; y < 100 ; y++) {

servoMove(leftServo, left_backward_fast);
servoMove(rightServo, right_backward_fast);
delay(20); // This value changes speed of motor, do not set < 20ms

}
}

Servo Motor via
digitalWrite()

//***
// subroutine that defines one step with one servo

void servoMove(byte servoPin, int pulseWidth) {
digitalWrite(servoPin, HIGH); // create the rising edge of the pulse
delayMicroseconds(pulseWidth); // set pulse width in microsec
digitalWrite(servoPin, LOW); // create the falling edge of the pulse

}

Servo Motor via
digitalWrite()

https://youtu.be/0UQ0a6u3cKg

https://youtu.be/0UQ0a6u3cKg

When to use analogWrite() and when to use digitalWrite()
to Control Servos

by Chris Odom
Physical Computing & Robotics with the Arduino IDE Vol 2

“Using analogWrite() to spin a servomotor is sometimes the
perfect function to use. This is true, for example, when

perpetual motion is called for or when the motion is time-based.
Here, one line of code will cause the servo to spin forever.
This is quite handy when you need a siren, or flashing lights, or
merry-go-rounds, or floor scrubbers – something that you want
to start and then forget about.”

When to use analogWrite() and when to use
digitalWrite() to Control Servos

by Chris Odom
Physical Computing & Robotics with the Arduino IDE Vol 2

“However, analogWrite() is not well-suited for step-based events, such as
blinking the LED five times. In my experience, driving the wheels of a robot
lends itself to a more step-based operation. For example, when your robot
is traversing a tabletop it should scan for the table’s edge with every step,
rather than some arbitrary time interval!

Another reason I’m not fond of using analogWrite() to drive a servo is the
lack of resolution and precision. In the above function,
changeSpeedsAnalogW(), I showed how a wide range of values yielded
identical servo speeds. Servos are not terribly precise devices in the best of
circumstances, but using analogWrite() for high-precision motion is not
advisable.

Another of the main drawbacks of using analogWrite() to program servos
is the fact that the servo must be connected to one the PWM pins on your
development board.8 Often when working on large projects, the
microcontroller’s signal pins get consumed by a wide array of sensors,
actuators, and motors and finding a free PWM pin can be problematic.”

PWM via a Library

Good Luck!
This is Engineering!

https://www.youtube.com/watch?v=nFbWXuR_2Ow

https://www.youtube.com/watch?v=nFbWXuR_2Ow

