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S T A T I S T I C S  S P O T L I G H T

Solving quality quandaries through statistics

P L O T  S P L I T T I N G

O

The Plot to Split 
The Plot

nce there was an aspiring 
research baker named Jake. 
He worked in R&D at a large 
commercial baked goods com-
pany, having recently received 

an advanced degree in the technology. 
He was ready to set the world, if not the 
bread, on fire. 

Jake’s boss gave him his first assign-
ment: Make the bread faster, better and 
cheaper. “Piece of cake,” he thought. 

“I’ll show her how I can use my spiffy 
new technology, coupled with my newly 
acquired group dynamics skills, to do 
just that.”

Jake coordinated with his newfound 
colleagues, former professors, and new 
companions in related technologies, and 
he accumulated all the corporate bread 
lore he could—the good and the bad, the 
fabled, the real, the fancy and the facts. He 
learned about the corporate culture and 
power structure, who was up and who 
was down, who could make things happen, 
who said frog, who jumped, and how high.

To accomplish his assigned task, of 
course, he had to experiment, but the 
experimental turf, to his chagrin, was 
not his own, nor his boss’s, nor hers, nor 
even that of the research upper crust.

Given the long batch baking time, 
reticence among production people to 
sacrifice output to research time, and 
five factors to study, Jake knew he had 
to experiment efficiently. 

As it turned out, while attending 
an earlier short course on experi-
mental strategy, he had learned about 
the benefits of first using screening 
designs for many factors, following up 
using more complicated plans focusing 
on the factors that showed promising 
effects from screening. Screening 
designs employed in the first phase of 
experimentation help identify the most 
important factors for further study in 
subsequent phases.

Jake looked up a five-factor 
screening design and went to his local, 
friendly statistician for help. Together, 
they arrived at a design characterized 
by two levels of each factor. It can be 
used to estimate the five factor effects, 
along with the 10 possible two-factor 
interactions. It was not capable of 
finding the sweet spot—that is, the 
optimal combination for faster, better 
and cheaper bread. 

It could, however, help narrow the 
field of major contributing factors. 

Jake had to go, toque in hand, to the 
production people, and he knew the 
production people were not interested 
in research. They were interested in—and 
rewarded for—making more and more 
bread to bring home the bacon. They were 
indeed good corporate citizens, under-
standing at a deliberate distance the value 
of research, as long as the time commit-
ment was held to a minimum. Doing that 
was the butter on their bread, so to speak.

Five factors
What factors might be involved in faster, 
better and cheaper bread production, 
given a sacred corporate formula? Jake’s 
conclusion, based on interviews and 
aggregate views, was: 
1.	 Oven temperature.
2.	 Oven throughput rate.
3.	 Oven air flow.
4.	 Air moisture.
5.	 Recipe active yeast content. 

Recognize, please, that the oven is 
not your mom’s conventional kitchen 
oven. To the contrary, it is a very long, 
very dark tunnel similar to that found 
on a railroad, but somewhat smaller and 
without the trains. Bread bakes as the 
dough runs this gauntlet.

Some designed experiments are undermined 
by unwitting plot splitting  by Lynne B. Hare
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Formally, it is called a half replicate of 
a two-to-the-fifth factorial (25-1) exper-
imental design, but Jake didn’t want to 
tell anyone that because of the fear asso-
ciated with the name. Besides, they’d call 
him a nerd.

Instead, Jake prepared a worksheet to 
show the specific settings of each of the 
16 bread batches he wanted to produce.

Jake showed his worksheet to his 
boss and R&D colleagues, explaining the 
pluses and minuses, the randomization 
and the intention to take the experi-
mental process in phases, with Table 1 
outlining the first phase. They liked it, 
and they admired his diligence. 

With their positive comments as confi-
dence builders, he went to the production 
people. That visit didn’t work out as well 
as he had hoped. 

Feedback from production
The production people examined the 
plan and said they would ditch the 

to change the temperature, but not 
quite as often.”

“Why change the temperature more 
than once?” asked Jake. “Because 
any factor must be evaluated against 
its repeats, and the repeats must be 
random. Otherwise, you can’t assure 
the boss that if you did it again, you’d 
get it again. And bosses always ask that 
question. It’s their job.”

“Look,” the statistician said. “If you 
were only going to evaluate the effect 
of temperature, you’d run for a while 
at the low level, then the high level and 
then repeat, right?” Jake nodded. 

“Well, we can do the same thing here 
for temperature, but we don’t have to 
do it for the other factors,” the stat-
istician said. “It’s called splitting the 
plot. The term comes from agricultural 
experimentation where field plots 
were assigned different levels of a main 
treatment and also sets of other treat-
ments within plots. The design type is a 
‘split plot,’ but we don’t have to say that 
out loud.”

Here it is in Online Table 1, which 
can be found on this column’s webpage 
at qualityprogress.com. It was neces-
sary to add four temperature changes, 
but that shouldn’t break the bank.

Well, the production people grum-
bled a little, but Jake got his first 
“split-plot design ever” run. The pro-
duction people were relieved because 
they only had to change the tempera-
ture three times. And Jake’s boss was 
happy because her charge was moving 
nicely ahead with his new assignment. 
Jake hit the ground running!

And his new colleagues started call-
ing him Jake the Baker.  QP
© 2021 Lynne B. Hare

randomization and instead run all the 
low temperature batches first, raise 
the oven temperature until it reached 
the new target—this might take a few 
hours—and they’d run the rest of the 
batches. Jake disagreed. “You’ve got 
to follow the design,” he said. “Other-
wise, the modeling won’t work, and 
the outcome won’t be repeatable.”

“Son,” they said, “do you know how 
long it takes to change the tempera-
ture of these ovens? You’ve got us 
changing up and down nine times. 
That would shut us down for a week! 
You’re a good guy. We like you, but we 
can’t run your design. Sorry.”

Crestfallen, Jake went back to the 
statistician and told her their design 
wouldn’t work. The production 
people said there were too many oven 
temperature changes. “Of course,” 
the statistician said. “I should have 
thought of that! We’ll develop a new 
design. Production will still have 

Note: -1 represents the low level of the factor, and 1 represents the high level of the factor to be determined 
after further discussion. Batches are listed in randomized order deliberately to minimize the influence of 
extraneous factors such as personnel changes and exterior temperature and humidity changes.

Bread baking screening design
Batch Oven 

temperature Throughput Air 
flow

Air 
moisture Yeast Speed Quality Cost

1 1 1 1 1 1
2 -1 -1 1 -1 -1
3 -1 -1 -1 1 -1
4 -1 -1 1 1 1
5 -1 1 -1 -1 -1
6 1 1 -1 1 -1
7 -1 1 -1 1 1
8 1 -1 -1 -1 -1
9 1 1 1 -1 -1
10 1 -1 1 -1 1
11 1 -1 -1 1 1
12 -1 1 1 -1 1
13 1 -1 1 1 -1
14 -1 -1 -1 -1 1
15 1 1 -1 -1 1
16 -1 1 1 1 -1

T A B L E  1
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How To Recognize
A Split-Plot
Experiment
by Scott M. Kowalski and Kevin J. Potcner
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he application of statistically designed experi-
ments is becoming increasingly important in
organizations engaged in Six Sigma and other

quality initiatives. In conducting these experiments and
analyzing the resulting data, experimenters become
aware of the treatment structure of the design: the num-

ber of factors to be studied and the various factor
level combinations. 

For example, most practitioners know a 23 full
factorial design consists of three factors, each at
two levels, where all eight treatment combinations
are studied. However, practitioners often neglect
the details of how the experimental runs are per-
formed and thus fail to see how this component,
along with the treatment structure, determines
which statistical approach to use.

Most would choose to run the eight treatment
combinations in a completely randomized order,
known as a 23 full factorial completely randomized
design. Unfortunately, limitations involving time,
material, cost and experimental equipment can
make it inefficient and, at times, impossible to run
a completely randomized design. In particular, it
may be difficult to change the level for one of the
factors. In this case, practitioners typically fix the
level of the difficult-to-change factor and run all
the combinations of the other factors—the split-
plot design.

Recognizing a Split-Plot Design
Split-plot experiments began in the agricultural

industry. Because one factor in the experiment is

T

In 50 Words
Or Less

• Not incorporating the experimental approach into an

analysis can result in incorrect conclusions. 

• One type of statistical experimental design, known as

the split-plot, is often more common in experimental

situations than the completely randomized design. 

• Several examples will help practitioners recognize

the split-plot design.

EXPERIMENTAL DESIGN



usually a fertilizer or irrigation method, it can only
be applied to large sections of land called whole
plots. The factor associated with this is therefore
called a whole plot factor.

Within the whole plot, another factor, such as
seed variety, is applied to smaller sections of the
land, which are obtained by splitting the larger sec-
tion of the land into subplots. This factor is there-
fore referred to as the subplot factor. 

These same experimental situations are also
common in industrial settings. Split-plot designs
have three main characteristics: 

1. The levels of all the factors are not randomly
determined and reset for each experimental
run. Did you hold a factor at a particular set-
ting and then run all the combinations of the
other factors?

2. The size of the experimental unit is not the same
for all experimental factors. Did you apply one
factor to a larger unit or group of units involv-
ing combinations of the other factors?

3. There is a restriction on the random assign-
ment of the treatment combinations to the
experimental units. Is there something that
prohibits assigning the treatments to the units
completely randomly?

The following industrial examples will help you
recognize when it would be best to use a split-plot
experiment. 

Example A
Let’s say you want to examine the image quality

of a printing process by varying three factors: 
• A = blanket type. 
• B = cylinder gap. 
• C = press speed. 
Figure 1 illustrates a simple image of this part of

a printing press.
You plan to study two different blanket types (1

and 2), three different cylinder gaps (low, medium
and high) and two press speeds (low and high),
and will run all 12 treatment combinations (see
Figure 2) in the experiment. A completely random-
ized design would require you to run the 12 treat-
ment combinations in a random order.

To change the cylinder gap and press speed, you

simply make an adjustment on a control panel while
the printing press is still running. Factors such as
these are called easy-to-change factors. To change
the blanket type, however, you must stop the press
and manually replace the blanket. A change such as
this is called a hard-to-change factor. 

Now imagine the first three runs in your experi-
ment are (A = 1, B = -1 and C = -1), (A = 2, B = 1
and C = -1) and (A = 1, B = 0 and C = 1). This
means you would have to install the blanket three
times (1 to 2, then back to 1), and using a complete-
ly randomized design would require you to fre-
quently stop the press, thereby extending the time
required to run the experiment. 

A more time efficient approach, and one that fits

QUALITY PROGRESS I NOVEMBER 2003 I 61

The Printing PressFIGURE 1

Blanket cylinder

Cylinder gap

Blanket
(image carrier)

Paper

Impression
cylinder

Factors That Affect 
Image Quality

FIGURE 2

Blanket type

Press
speed

Cylinder
gap

1

0

-1

1

1
-1

2



62 I NOVEMBER 2003 I www.asq.org

into the split-plot framework, would be to randomly
choose one of the blanket types (1 or 2), install it on
the printing press, and run the six treatment combi-
nations in cylinder gap and press speed in a random
order. Then you would change the blanket type and
run the six treatments in another random order,

repeating the process until you reached the desired
number of replicates for the blanket type factor. 

The way in which the factor levels for blanket
type are changed in the second approach involves
a different randomization scheme from that of the
factor levels for the other two factors. This different
randomization structure is one feature of a split-
plot design and is common when some of the fac-
tors are difficult to change. If the experiment were
conducted in this manner, it would be incorrect to
analyze the data as if you had run the experiment
as a completely randomized design.

Example B 
Now let’s look at an experiment involving the

water resistance property of wood in which you
select two types of wood pretreatment (1 and 2)
and four types of stain (1, 2, 3 and 4) as variables
(see Figure 3).

To conduct this experiment in a randomized
fashion, you would need eight
wood panels for each full replicate
of the design. You would then ran-
domly assign a particular pretreat-
ment and stain combination to each
wood panel.

That’s when you discover how
difficult it is to apply the pretreat-
ment to a small wood panel. The
easiest way to do it would be to
apply each of the pretreatment
types (1 and 2) to an entire board,
then cut each board into four pieces
and apply the four stain types to
the smaller pieces (see Figure 4).

The experimental units for the
two factors in this experiment are
not the same. For the pretreatment
factor, the experimental unit is the
entire board, but for the stain fac-
tor, the experimental unit is one of
the small panels cut from the large
board. Varying sizes of experimen-
tal units is another feature of split-
plot designs.

Example C
Let’s say you want to examine

the effect the four following 

Factors That Affect Wood’s 
Water Resistance

FIGURE 3

Pretreatment

1

2
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Treatment ApplicationFIGURE 4
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EXPERIMENTAL DESIGN
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various factors have on the strength of plastic: 
• A = baking temperature. 
• B = additive percentage. 
• C = agitation rate. 
• D = processing time. 
You plan to study each factor at two levels: low

= -1 and high = 1. See Figure 5 for a graphical rep-
resentation of this treatment design.

To conduct this experiment as a completely ran-
domized design, you would run all 16 treatment
combinations in a random order. After obtaining

the required 16 batches of plastic, two for each of
the eight different combinations of factors B, C and
D, you would pour the plastic into molds and bake
each individually at one of two temperatures (see
Figure 6). 

If you conducted the experiment in this way,
you would have to frequently change the baking
oven’s temperature, which may take some time to
stabilize. A completely randomized design also
implies each run of the oven is a true experimental
run. That means 16 separate runs of the oven are

Factors That Affect the Strength of PlasticFIGURE 5

Agitation rate

1

-1
-1

-1
1

1

Additive percentage
-1 1

Baking temperature

Processing time

Individual Baking ProcessFIGURE 6

16 batches of plastic prepared (two for each of the 
eight treatment combinations for B: additive percentage, 
C: agitation rate and D: processing time).

Particular treatment
combination for 
B: additive percentage, 
C: agitation rate and 
D: processing time.

Baked in oven (one at a time) 
at a particular level of A: baking temperature.
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needed, therefore adding considerable time to the
experiment.

A more efficient approach would be to bake all
eight molds for one temperature setting at the same
time. You would follow this by a single run of the
oven at the other temperature level, repeating the
process until you have run the desired number of
replicates for the temperature factor (see Figure 7).

Now you no longer have a completely random-
ized design but a split-plot design. Why? There are
three reasons:

1. For each of the three factors—additive percent-
age, agitation rate and processing time—one
experimental unit equals one batch of plastic,
while for the temperature factor, one experi-
mental unit equals all eight batches. 

2. Temperature can be thought of as a hard-to-
change factor, and the three easy-to-change
factors are varied within a level of the hard-to-
change factor. 

3. The temperature factor uses a different ran-
domization scheme from the other factors. The
molds are assigned to the temperature factor
in groups of eight as opposed to individually.

Split-Plot Design Affects Analysis
Many practitioners fail to see there is more to

knowing the correct analysis than just being able to
identify the treatment structure. The analysis of
designed experiments directly follows from the
way the runs were carried out. 

For example, when a designed experiment uses
blocks such as days or batches, the analysis of the
experiment includes a term for these blocks. When
a designed experiment is performed by fixing a fac-
tor and then running the combinations of the other
factors, using different sized experimental units or
using a different randomization for the factors (a
split-plot design), the analysis should incorporate
these features. 

In example C, the complete 23 factorial treat-
ment design was replicated twice using the split-
plot approach. This resulted in the 32 response
values shown in Table 1. The responses were first
analyzed incorrectly as if they came from a com-
pletely randomized design. The responses were
then correctly analyzed as a split-plot experi-
ment. (Our intention is not to teach the analysis,
but interested readers can look at Table 2 (p. 66)

Group Baking ProcessFIGURE 7

16 batches of plastic prepared (two for each of the 
eight treatment combinations for B: additive percentage, 
C: agitation rate and D: processing time).

Particular treatment
combination for 
B: additive percentage, 
C: agitation rate and 
D: processing time.

Baked in oven (eight at a time) 
at a particular level of A: baking temperature.

EXPERIMENTAL DESIGN
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for a summary of the two different analyses.)
The results of the incorrect analysis, a completely

randomized design, indicate that, at the 0.05 signifi-
cance level, the main effects for A (baking tempera-
ture) and D (processing time) are significant, as are
the AC (baking temperature/agitation rate) and
AD (baking temperature/processing time) interac-
tions. 

The results of the correct, split-plot analysis indi-
cate the main effects for B (additive percentage)
and D (processing time) are significant at the 0.05
level and A (baking temperature) is not. In addi-
tion to the AC (baking temperature/agitation rate)
and AD (baking temperature/processing time)
interactions, the CD (agitation rate/processing
time) interaction is also significant. 

Experimental Error
Two interesting results appear when the two

analysis approaches are compared: 
1. The effect of the baking temperature was

thought to be significant when analyzed as a
completely randomized design but was actual-
ly insignificant when analyzed correctly. The
whole plot error of 56.29 is much larger than
the error of 14.21 from the completely random-
ized design analysis. This would cause you to
incorrectly assume baking temperature is an
important effect. 

2. Effects at the subplot level that were not sig-
nificant when analyzed as a completely ran-
domized design are seen as significant when
analyzed correctly. The subplot error of 9.78 is
smaller than the one that arises when a com-
pletely randomized design is incorrectly
assumed. As a result, important effects at the
subplot level that were missed in the incorrect
analysis are now seen. 

Why did this happen? In the completely ran-
domized design, all factor effects use the mean
square error as the estimate of experimental error.
In a split-plot experiment, however, there are two
different experimental error structures: one for the
whole plot factor and one for the subplot factors.
This is a result of the two separate randomizations
that occur when the experiment is run. 

Experimental error is caused when the actual
experimental conditions are replicated. This could
include the preparation and mixing of the plastic

batches or the setup and temperature stabilization
of the oven. For the baking temperature factor,
there are only four experimental units—each set of
eight molds placed together in the oven. 

Even though each of these eight molds comes
from a different treatment combination of the other
three factors, they were all processed in a single
run of the oven. They do not provide an estimate of
experimental error for the whole plot factor. The
experimental error for the whole plot factor comes

The 32 Response ValuesTABLE 1

Temperature Additive Rate Time Strength

A B C D Y
1 1 1 -1 -1 51.9
2 1 1 -1 1 66.8
3 1 1 1 -1 66.2
4 1 1 1 1 70.8
5 1 -1 1 -1 61.3
6 1 -1 1 1 68.5
7 1 -1 -1 1 59.5
8 1 -1 -1 -1 58.5
9 -1 1 -1 -1 57.4
10 -1 1 -1 1 57.5
11 -1 -1 1 -1 56.5
12 -1 1 1 1 63.9
13 -1 -1 1 1 56.4
14 -1 1 1 -1 58.1
15 -1 -1 -1 1 53.2
16 -1 -1 -1 -1 59.5

Temperature Additive Rate Time Strength

A B C D Y
17 -1 -1 -1 -1 66.6
18 -1 -1 -1 1 63.9
19 -1 1 1 -1 62.6
20 -1 1 1 1 63.2
21 -1 -1 1 -1 56.1
22 -1 1 -1 1 63.3
23 -1 -1 1 1 62.7
24 -1 1 -1 -1 65.0
25 1 -1 -1 -1 59.5
26 1 -1 -1 1 64.2
27 1 -1 1 1 68.0
28 1 -1 1 -1 58.6
29 1 1 -1 -1 65.6
30 1 1 1 1 73.3
31 1 1 -1 1 61.5
32 1 1 1 -1 64.0
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from the variation experienced when the tempera-
ture is changed. This whole plot error is typically
larger than the error from a completely random-
ized design. 

In conducting a split-plot experiment, you need
to be sure there is true replication in the whole plot
factor. If each level of baking temperature was run
only once and not replicated as it was here, there
would be no estimate of whole plot experimental
error and, therefore, no statistical test for this factor.

The challenges faced by practitioners result in
completely randomized experiments being the
exception, not the norm. Unfortunately, split-plot
and other noncompletely randomized experimen-
tal designs have not received proper attention in
most Black Belt statistical training courses because
the mathematical concepts are usually more com-
plicated or more general than those in the com-
pletely randomized design. 

Fortunately, the availability of statistical soft-
ware has slowly started to ease the analysis and
interpretation of more complicated experimental
structures, such as split-plot experiments. 

Knowledge of the split-plot design gives practi-
tioners another option with which to conduct
experiments more efficiently.
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EXPERIMENTAL DESIGN

Summary of Incorrect and Correct Analyses for ExampleTABLE 2

Incorrect completely random

Term Significance Variability

Temperature ▲ Significant 14.21

Additive ▲ Not significant 14.21

Rate Not significant 14.21

Time Significant 14.21

Temperature/additive Not significant 14.21

Temperature/rate Significant 14.21

Temperature/time Significant 14.21

Additive/rate Not significant 14.21

Additive/time Not significant 14.21

Rate/time ▲ Not significant 14.21

One error
term for all

Correct split-plot

Significance Variability

Not significant 56.29

Significant 9.78

Not significant 9.78

Significant 9.78

Not significant 9.78

Significant 9.78

Significant 9.78

Not significant 9.78

Not significant 9.78

Significant 9.78

Two error
terms

▲ Shows terms that have a different interpretation between the two analyses. 
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options nodate nonumber ls=80 nocenter; 
data plastic; 
input temp oven additive rate time y @@; 
datalines; 
1 1 1 -1 -1 51.9 1  1 1 -1 1 66.8  
1 1 1 1 -1 66.2 1  1 1 1 1 70.8  
1 1 -1 1 -1 61.3 1  1 -1 1 1 68.5 
1 1 -1 -1 1 59.5 1  1 -1 -1 -1 58.5  
-1 2 1 -1 -1 57.4 -1 2 1 -1 1 57.5  
-1 2 -1 1 -1 56.5 -1 2 1 1 1 63.9 
-1 2 -1 1 1 56.4 -1 2 1 1 -1 58.1  
-1 2 -1 -1 1 53.2 -1 2 -1 -1 -1 59.5  
-1 1 -1 -1 -1 66.6 -1 1 -1 -1 1 63.9 
-1 1 1 1 -1 62.6 -1 1 1 1 1 63.2  
-1 1 -1 1 -1 56.1 -1 1 1 -1 1 63.3  
-1 1 -1 1 1 62.7 -1 1 1 -1 -1 65.0 
1 2 -1 -1 -1 59.5 1  2 -1 -1 1 64.2  
1 2 -1 1 1 68.0 1  2 -1 1 -1 58.6  
1 2 1 -1 -1 65.6 1  2 1 1 1 73.3 
1 2 1 -1 1 61.5 1  2 1 1 -1 64.0 
; 
proc glm; 
class temp additive rate time; 
model y = 
temp additive rate time temp*additive temp*rate temp*time additive*rate additive*time rate*time; 
run; 
 
                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                      10    464.7606250     46.4760625      3.27   0.0106 
Error                      21    298.2490625     14.2023363 
Corrected Total            31    763.0096875 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 
temp                        1    85.47781250    85.47781250      6.02   0.0230  
additive                    1    45.36281250    45.36281250      3.19   0.0884 
rate                        1    41.17781250    41.17781250      2.90   0.1034 
time                        1    75.95281250    75.95281250      5.35   0.0310  
temp*additive               1     1.08781250     1.08781250      0.08   0.7847 
temp*rate                   1    78.43781250    78.43781250      5.52   0.0286  
temp*time                   1    62.44031250    62.44031250      4.40   0.0483  
additive*rate               1    27.93781250    27.93781250      1.97   0.1754 
additive*time               1     2.94031250     2.94031250      0.21   0.6538 
rate*time                   1    43.94531250    43.94531250      3.09   0.0931 
 



proc glm; 
class temp oven additive rate time; 
model y = temp oven(temp) additive rate time temp*additive temp*rate temp*time additive*rate 
additive*time rate*time; 
random oven(temp) / test; 
run; 
 
Tests of Hypotheses for Mixed Model Analysis of Variance 
 
Dependent Variable: y 
 
   Source                    DF   Type III SS   Mean Square  F Value  Pr > F 
 
   temp                       1     85.477812     85.477812     1.52  0.3427 
 
   Error                      2    112.390625     56.195313 
 
   Error: MS(oven(temp)) 
 
 
   Source                    DF   Type III SS   Mean Square  F Value  Pr > F 
 
   oven(temp)                 2    112.390625     56.195313     5.74  0.0112  
   additive                   1     45.362812     45.362812     4.64  0.0443  
   rate                       1     41.177812     41.177812     4.21  0.0542 
   time                       1     75.952812     75.952812     7.76  0.0118  
   temp*additive              1      1.087812      1.087812     0.11  0.7424 
   temp*rate                  1     78.437812     78.437812     8.02  0.0107  
   temp*time                  1     62.440312     62.440312     6.38  0.0206  
   additive*rate              1     27.937812     27.937812     2.86  0.1074 
   additive*time              1      2.940312      2.940312     0.30  0.5899 
   rate*time                  1     43.945312     43.945312     4.49  0.0474  
 
   Error: MS(Error)          19    185.858438      9.782023 
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How To Analyze 
A Split-Plot
Experiment
by Kevin J. Potcner and Scott M. Kowalski

any quality improvement projects
require some form of experimentation
on a process. A chemical engineer may

wish to determine the settings for certain process
variables to optimize a critical quality characteristic

of the resulting product. A materials engineer may
run a plastic injection molding process using differ-
ent grades of raw material to determine which pro-
duces the least variability in breaking strength. 

The deliberate changing of input process vari-
ables with the intention of studying their effect on
output variables is referred to as a designed experi-
ment. Typically, statisticians identify a designed
experiment by describing two primary components: 

1. One component, referred to as the treatment
structure, details the different factors (input
variables) the experiment will incorporate and
the different settings (levels) for those factors.
For example, a 25 full factorial treatment struc-
ture means five factors will be used in the
experiment, each studied at two levels, and all
2 x 2 x 2 x 2 x 2 = 32 treatment combinations
are to be run.

2. The other component is referred to as the
experimental or design structure of the experi-
ment. This component illustrates how the
experimental runs are to be carried out—for
example, defining the experimental and obser-
vational units, selecting the experimental units
and assigning them to the treatment combina-
tions, choosing the randomization scheme and

M
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• Experiments with simple design structures,

such as complete randomization, are often not

realistic in the real world.

• Typically an experiment will have some form of

randomization restriction, and the split-plot

method is a solution.

• The analysis of a split-plot experiment involves

two error variances.



deciding how the treatment combinations will
be changed throughout the experiment.

In a previous article in Quality Progress, we illus-
trated the features of the split-plot design, how
common the features are in industrial experimenta-
tion and how the practitioner can recognize this sit-

uation.1 We will now illustrate the proper analysis
of this particular type of design structure.

Example of a Split-Plot Design 
Consider an experiment involving the water resis-

tant property of wood. Two types of wood pretreat-
ment (one and two) and four types of stain (one,
two, three and four) have been selected as variables
of interest. A graphical representation of this type of
treatment design is shown in Figure 1. 

Conducting this experiment in a completely
randomized fashion would require eight wood
panels for each full replicate of the design. Each

wood panel would be randomly assigned a partic-
ular pretreatment and stain combination. But it
turns out to be very difficult to apply the pretreat-
ment to a small wood panel. 

The easiest way would be to apply each of the
pretreatment types (one and two) to an entire board,
then cut each board into four smaller pieces and
apply the four stain types to the smaller pieces. This
is shown in Figure 2.

So how exactly will the experiment be conduct-
ed? For example, how many boards will be used
for each treatment combination? How many repli-
cates of each treatment combination will be run? In
what order will the experimental runs be conduct-
ed? How many measurements will be made on
each small piece? These decisions should be based
on both statistical and practical considerations.

Suppose the experimenter has decided to run three
replicates of the pretreatment factor. This results in six
boards and 3 x 2 x 4 = 24 total observations. To pro-
duce an experimental run for this process, you must
first pretreat a board. After one of the randomly
selected pretreatments has been applied, the board is
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In many real experimental
situations, a restriction is

typically placed on the
randomization of the runs. 
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cut into four pieces and then stained using one of the
four stains selected at random. 

The reader should recognize this is a split-plot
design for four reasons:

1. For the pretreatment factor, an experimental
unit is the entire board or a set of four pieces of
the board after they are cut. For the stain fac-
tor, an experimental unit is an individual piece
of the board. Having unequal sized experi-
mental units for the different factors is one key
element of a split-plot design. 

2. Each factor uses a different randomization
scheme. In contrast, a complete randomized
design would use one randomization scheme
for all 24 experimental runs.

3. Note for a single run at one level of pretreat- ment, four separate runs are conducted for the
stains. As a result, pretreatment could be
thought of as a hard-to-change factor, while
stain could be considered an easy to change
factor. 

4. The number of experimental replicates is not
the same for each factor. Pretreatment has only
three experimental replicates for each of the
two factor levels, while stain has six experi-
mental replicates for the stain factor levels.

Because of these features, we would say the
experimenter has run a 2 x 4 full factorial treatment
structure within a split-plot design structure. Each
of the six whole-plots (entire boards) has four sub-
plots (smaller pieces of board), resulting in three
replicates at the whole-plot level and six replicates
at the subplot level. 

How To Analyze the Experiment
The simplest experiment from a statistical analy-

sis perspective is what’s called a completely ran-
domized design structure. This, however, would
require all 8 x 3 = 24 experimental runs to be con-
ducted in a completely random order. For the exper-
iment to be run in this way, each of the 24 runs
would need to be a “true” experimental run. This
would include a complete preparation and setup of
the experimental materials and equipment. 

As you can imagine, this experimental approach
is not always efficient, practical or at times even
possible to run. In many real experimental situa-
tions, a restriction is typically placed on the ran-
domization of the runs. Such restriction, however,
affects the statistical analysis. 

Pretreat Stain WP error Resistance

2 2 4 53.5

2 4 4 32.5

2 1 4 46.6

2 3 4 35.4

2 4 5 44.6

2 1 5 52.2

2 3 5 45.9

2 2 5 48.3

1 3 1 40.8

1 1 1 43.0

1 2 1 51.8

1 4 1 45.5

1 2 2 60.9

1 4 2 55.3

1 3 2 51.1

1 1 2 57.4

2 1 6 32.1

2 4 6 30.1

2 2 6 34.4

2 3 6 32.2

1 1 3 52.8

1 3 3 51.7

1 4 3 55.3

1 2 3 59.2

Data for Wood ExampleTABLE 1

Whole-Plot Analysis Using 
The Averages of Resistance 
In Each Whole Plot

TABLE 2

Analysis of variance for the average resistance

Source DF SS MS F P
Pretreat 1 195.51 195.51 4.03 0.115
Error 4 193.84 48.46
Total 5 389.35

DF = degrees of freedom
SS = sums of squares
MS = mean square
F = F-statistic
P = p-value

WP = whole plot
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An example illustrates the correct analysis of split-
plot experiments. Consider the previously described
experiment involving the water resistant property of
wood. Two types of wood pretreatment (one and
two) and four types of stain (one, two, three and
four) have been selected as variables of interest. 

A graphical representation of the experiment is
shown in Figure 2 on p. 68 (for each pretreatment
the stains have been randomly assigned to the four
panels). Table 1 (p. 69) gives the design as it was
carried out: First a randomly selected pretreatment
is applied, then the wood is cut into four panels
and the stains are applied in random order. 

The null hypothesis for all factors is H0: There is
no effect due to the factor. A test statistic is neces-
sary to test this hypothesis. In this paper, the test
statistics are all F-statistics, which are the ratio of
the mean square (MS) for the factor of interest to
the correct mean square error

Once the F-statistic has been calculated, a p-
value can be computed and used to test the null
hypothesis (we typically reject H0 if the p-value <
0.05). The p-value is the probability the test statistic
will take on a value at least as extreme as the ob-
served value of the statistic, assuming the null
hypothesis is true. 

It is sometimes easier to think of the analysis of a

CorrectError

Factor

MS
MS

F  =

split-plot experiment as two separate experiments
corresponding to the two levels of the split-plot
experiment: the whole-plot (WP) level and the sub-
plot level.

Whole-Plot Level Only
Again, suppose the experiment is carried out

using three replicates of the pretreatment factor.
This involves six boards (three for pretreatment
number one and three for pretreatment number
two). For now, let’s focus on only these six boards
(before they are cut and the stains are applied) and
break down the degrees of freedom (df). 

Because these six boards are randomly assigned
a pretreatment level, this part of the experiment is
essentially a completely randomized design with
one 2-level factor (pretreatment) and three repli-
cates. Therefore, there is 6 – 1 = 5 total df for this
whole-plot level of the experiment. 

Because the only factor has two levels, pretreat-
ment has 1 df. This leaves 4 df for the error term at
the whole-plot level. Notice how thinking of the
experiment in this manner clearly shows the pre-
treatment variable has its own error term, “whole-
plot error.” The split-plot design simply exploits
the fact that each of the six pretreated boards can
be cut into four pieces and another factor (stain)
can also be studied.

Once all the data are collected, we could write
the model as: 

Average response = 
pretreatment factor + WP error

Incorrect Completely
Randomized Design Analysis
For Water Resistance of Wood

TABLE 3

Source DF SS MS F P
Pretreat 1 782.04 782.04 13.49 0.002
Stain 3 266.00 88.67 1.53 0.245
Pretreat x Stain 3 62.79 20.93 0.36 0.782
Error 16 927.88 57.99
Total 23 2038.72

DF = degrees of freedom
SS = sums of squares
MS = mean square
F = F-statistic
P = p-value

Correct Split-Plot Analysis 
For Water Resistance of Wood

TABLE 4

Analysis of variance for resistance, using adjusted SS for tests

Source DF SS MS F P
Pretreat 1 782.04 782.04 4.03 0.115
WP (pretreat) 4 775.36 193.84 15.25 .*
Stain 3 266.01 88.67 6.98 0.006
Pretreat x stain 3 62.79 20.93 1.65 0.231
Error 12 152.52 12.71
Total 23 2038.72

WP = whole-plot errors
DF = degrees of freedom
SS = sums of squares
MS = mean square
F = F-statistic
P = p-value

DESIGN OF EXPERIMENTS
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in which average response is the mean of the four
different stain responses in each whole plot, and
WP error is the error term for the whole-plot factor
(pretreatment). 

The whole-plot experimental error is estimated
by examining the variability that occurs between
the three whole plots within each of the two pre-
treatment settings. Using these six averages will
yield the correct F-test for pretreatment (pretreat-
ment is not significant with p = 0.115, as shown in
Table 2, p. 69). However, the sums of squares will
not be the same as the correct overall split-plot
analysis (they will be off by a factor of 4 = the num-
ber of subplots in each whole-plot). 

Incorrect Completely Randomized
Design Analysis

If the 24 pieces involving the four stains are incor-
rectly viewed as their own completely randomized
experiment, then there would be 24 – 1 = 23 total df.
This would involve 2 - 1= 1 df for pretreatment, 4 – 1
= 3 df for stain and (2 - 1)(4 - 1) = 3 df for the pre-
treatment by stain interaction. Therefore, there
would be 23 – 7 = 16 df for error. The incorrect com-
pletely randomized model is:

Response = pretreatment + stain + pretreatment
x stain interaction + error.

Notice, however, this analysis is incorrect
because it does not remove the sums of squares and
4 df for whole-plot error discussed above (this is
viewing the experiment only at the subplot level).
The error term in this model is the sum of the
whole-plot error and the subplot error. 

When the whole-plot error is not removed from
the completely randomized analysis, the error
term used for testing the subplot factors is inflat-
ed. Therefore, the F-test for all terms in the model
would use the wrong error term. This can result
in F-tests that are insignificant for some subplot
factors while overstating significance for the
whole-plot factor. 

Table 3 shows the analysis. Notice the pretreat-
ment factor is incorrectly identified as significant
(p = 0.002), while the stain factor is insignificant (p
= 0.245). We have seen in the earlier whole-plot
analysis that pretreatment is not significant, and
we will see later in the correct split-plot analysis
that stain is significant. 

Correct Split-Plot Analysis
The split-plot model is:

Response = pretreatment + WP error + stain +
pretreatment x stain interaction + SP error

in which SP error is the error for the subplot factor
(stain) and the whole-plot by subplot interaction
(pretreatment x stain). To get the correct analysis of
variance table with all sources of variation includ-
ing the two error terms involves removing the sums
of squares and df for the whole-plot error from the
reported error term in the incorrect completely ran-
domized analysis. This can be done manually, but
then all F-tests and p-values will have to be gener-
ated manually as well. Fortunately, many software
packages can be tricked to do this for you automati-
cally by using a nested model:

Response = pretreatment + WP (pretreatment) +
stain + pretreatment x stain interaction + SP error,

in which WP is a variable that goes from one to six
indicating each whole-plot and must be declared as
a random factor. 

Specifying the model in this way allows the cre-
ation of two separate estimates of experimental
error, an ingredient of the split-plot design. The
nested term WP (pretreatment) comes from the fact
the whole plots are nested within pretreatment.2

This term will be the correct error term for the
pretreatment factor, and most software packages
will correctly use this term for the F-test of pre-
treatment. The df will also be correctly calculated
as 2(3 - 1) = 4 in which 2 represents the number of

The limitations and 
challenges of experimenting
in the real world result in
these simple experiments
being the exception rather
than the norm.
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levels for the pretreatment factor and 3 represents
the number of replicates at the pretreatment level
of the experiment. 

The other estimate of experimental error, called
the subplot error, is estimated by examining the vari-
ation that occurs between the 12 pairs of experimen-
tal runs that have the same pretreatment and stain
setting minus the whole-plot experimental error.

The whole-plot experimental error is used to test
the significance of the whole-plot factor, pretreat-
ment. The subplot experimental error is used to
test the significance of the subplot factor, stain and
pretreatment by stain interaction. Therefore, the
tests use a different mean square error in the de-
nominator of the F-ratio.

Table 4 (p. 70) shows the F-statistic for the effect
of pretreatment, the whole-plot factor, is: 

Note the p-value of 0.115 indicates this factor is
not significant. The F-test for the effect of stain, the
subplot factor, is:

Note the p-value of 0.006 indicates this factor is
significant. The F-test for the effect of the pretreat-
ment by stain interaction is:

Note the p-value of 0.231 indicates the interac-
tion effect is not significant. Notice for both pre-
treatment and stain, these are different conclusions
from the analysis assuming a completely random-
ized design. 

Many experiments in industry involve two-level
factors. In the wood experiment, the four stains
could actually be a 22 in stain type and amount. All
this does is add a little more structure to the experi-
ment and the breakdown of the degrees of freedom. 

12.71
20.93

Mean square 

Mean square 

error

 pretreat x stain = 1.65.==F

12.71
88.67

Mean square 
Mean square 

error

stain = 6.98.=F  =

193.84
782.04

Mean square 
Mean square 

WP (pretreatment)

pretreatment = 4.03.=F  =

For example, the previous 3 df for stain can now
be broken down into 1 df for stain type, 1 df for
amount and 1 df for the stain type by amount inter-
action. This is also true for the previous pretreat-
ment by stain interaction, which is now 1 df for
pretreatment by stain type interaction, 1 df for pre-
treatment by amount interaction and 1 df for the
pretreatment by stain type by amount interaction. 

Another Example
Consider another example with one hard-to-

change factor (Z), three easy-to-change factors (A, B,
C) and all factors at two levels. The hard-to-change
factor is replicated so there are four whole plots,
each with eight subplots. 

Table 5 gives the design as it was carried out:
First a level for Z is randomly selected, then the
eight combinations of A, B and C are carried out in
random order. The correct and incorrect analyses
are shown in Table 6. Notice the incorrect analysis
indicates Z is significant, while the Z x A and A x B
interactions are shown as not significant.

Extensions on the Split-Plot
An astute reader can probably now surmise the

split-plot framework can be expanded to even
more complicated experiments. Several extensions
that can be made to the split-plot scenario are:

• It can have more than one hard-to-change fac-
tor. (Make sure the extra factor(s) is really hard
to change and not just inconvenient to change.)

• The whole-plot level design may involve blocks
instead of being completely randomized.

• There may be several easy-to-change factors,
which may necessitate using a fractional facto-
rial design at the subplot level (you must be
very careful because the alias structure is much
more complicated in split-plot designs).

• More factors could be added that are subplots
for one factor while at the same time whole
plots for other factors. This results in a split-
split-plot design.3

The design and analysis of industrial experi-
ments involves understanding not only the treat-
ment structure but also the three principles of the
design structure: randomization, replication and
controlling for known sources of variation (typical-
ly through blocking). 

The experimenter should be made aware of an

DESIGN OF EXPERIMENTS
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important point about the experimental replication
in a split-plot design. The effect of the whole-plot
factor, which will have the least number of experi-
mental replicates, is estimated less precisely than
the subplot factors, which will have more experi-
mental replicates. Thus, if allowed a choice when
planning a split-plot experiment, the experimenter
should try to put the most important factors at the
subplot level.

Getting Beyond Academics
Many practitioners of experimentation are

beginning to incorporate the principles and
methodology of designed experiments developed
in the statistical literature over the last 75 years.
The first experiments learned in typical statistical
and quality methodology training courses are
those with simple design structures, such as the
completely randomized design. 

Data for the Second ExampleTABLE 5 Summary for Second ExampleTABLE 6

Correct split-plot analysis

Source       DF SS MS F P

Z 1 59.13 59.13 2.94 0.228
WP (Z) 2 40.17 20.08 6.83 *
A 1 597.72 597.72 203.13 0.000
B 1 1226.36 1226.36 416.77 0.000
C 1 1.49 1.49 0.51 0.486
Z x A 1 14.72 14.72 5.00 0.038
Z x B 1 285.01 285.01 96.86 0.000
Z x C 1 3.71 3.71 1.26 0.275
A x B 1 13.13 13.13 4.46 0.048
A x C 1 0.81 0.81 0.28 0.605
B x C 1 1.16 1.16 0.40 0.537
Error 19 55.91 2.94
Total 31 2299.32

Incorrect completely randomized analysis

Source       DF SS MS F P

Z 1 59.13 59.13 12.92 0.002
A 1 597.72 597.72 130.65 0.000
B 1 1226.36 1226.36 268.05 0.000
C 1 1.49 1.49 0.33 0.575
Z x A 1 14.72 14.72 3.22 0.087
Z x B 1 285.01 285.01 62.30 0.000
Z x C 1 3.71 3.71 0.81 0.378
A x B 1 13.13 13.13 2.87 0.105
A x C 1 0.81 0.81 0.18 0.678
B x C 1 1.16 1.16 0.25 0.619
Error 21 96.08 4.58
Total 31 2299.32

Z = hard-to-change factors
A, B and C = easy-to-change factors
WP = whole-plot errors
DF = degrees of freedom
SS = sums of squares
MS = mean square
F = F-statistic
P = p-value

Z A B C WP Response
1 -1 1 1 1 108.4
1 1 -1 1 1 131.6
1 -1 -1 -1 1 124.0
1 1 -1 -1 1 134.9
1 -1 1 -1 1 103.7
1 1 1 -1 1 112.9
1 1 1 1 1 113.4
1 -1 -1 1 1 122.3

-1 -1 -1 -1 3 119.3
-1 1 1 -1 3 120.9
-1 1 1 1 3 123.0
-1 1 -1 1 3 127.9
-1 -1 1 1 3 117.3
-1 -1 -1 1 3 120.9
-1 1 -1 -1 3 129.9
-1 -1 1 -1 3 115.4
1 -1 1 1 2 100.8
1 1 1 -1 2 114.4
1 1 -1 1 2 132.8
1 1 -1 -1 2 131.4
1 -1 -1 -1 2 118.4
1 -1 1 -1 2 104.4
1 1 1 1 2 111.7
1 -1 -1 1 2 121.1

-1 1 1 -1 4 116.7
-1 -1 1 -1 4 112.8
-1 -1 1 1 4 112.2
-1 1 -1 1 4 127.7
-1 -1 -1 -1 4 118.4
-1 1 1 1 4 120.9
-1 1 -1 -1 4 127.0
-1 -1 -1 1 4 119.4

Z = hard-to-change factors

A, B and C = easy-to-change factors

WP = whole-plot errors



In practice, however, the limitations and chal-
lenges of experimenting in the real world result in
these simple experiments being the exception rather
than the norm. Typically, an experiment will contain

some form of a restriction on the randomization. We
fear that more often than not, these features are not
being incorporated into the planning and analysis of
the experiment. 

With the recent growth and
interest in the use of the statistical
sciences in today’s businesses,
however, we expect the sophistica-
tion and understanding of experi-
mentation will increase, and
designs such as the split plot will
become more readily recognized
and properly analyzed.
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Split-Plot Tables 1,2,3,4 Quality Progress December 2004 
 
options nodate nonumber ls=80 nocenter; 
data wood; 
input pretreat stain board resistance @@; 
cards; 
2 2 1 53.5 2 4 1 32.5 2 1 1 46.6 
2 3 1 35.4 2 4 2 44.6 2 1 2 52.2 
2 3 2 45.9 2 2 2 48.3 1 3 1 40.8 
1 1 1 43.0 1 2 1 51.8 1 4 1 45.5 
1 2 2 60.9 1 4 2 55.3 1 3 2 51.1 
1 1 2 57.4 2 1 3 32.1 2 4 3 30.1 
2 2 3 34.4 2 3 3 32.2 1 1 3 52.8 
1 3 3 51.7 1 4 3 55.3 1 2 3 59.2 
; 
 
proc sort; 
by pretreat board; 
run; 
 
proc means; 
var resistance; 
by pretreat board; 
run; 
 
pretreat=1 board=1 
 
 
 N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 4      45.2750000       4.7549097      40.8000000      51.8000000 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
pretreat=1 board=2 
 
 
 N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 4      56.1750000       4.0966450      51.1000000      60.9000000 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
pretreat=1 board=3 
 
 
 N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 4      54.7500000       3.3271610      51.7000000      59.2000000 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
pretreat=2 board=1 
 
 
 N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 4      42.0000000       9.7846819      32.5000000      53.5000000 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
pretreat=2 board=2 
 
 
 N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 4      47.7500000       3.3391616      44.6000000      52.2000000 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
pretreat=2 board=3 
 
 
 N            Mean         Std Dev         Minimum         Maximum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 4      32.2000000       1.7568912      30.1000000      34.4000000 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 



data justwholeplot; 
input pretreat y; 
cards; 
1 45.275 
1 56.175 
1 54.75 
2 42.00 
2 47.75 
2 32.20 
; 
 
proc glm; 
class pretreat; 
model y = pretreat; 
run; 
                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       1    195.5104167    195.5104167      4.03   0.1150 
Error                       4    193.8404167     48.4601042 
Corrected Total             5    389.3508333 
 
proc glm data=wood; 
class pretreat stain; 
model resistance = pretreat stain pretreat*stain; 
run; 
                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                       7    1110.838333     158.691190      2.74   0.0452 
Error                      16     927.880000      57.992500 
Corrected Total            23    2038.718333 
 
Source                     DF    Type III SS    Mean Square   F Value   Pr > F 
 
pretreat                    1    782.0416667    782.0416667     13.49   0.0021 
stain                       3    266.0050000     88.6683333      1.53   0.2454 
pretreat*stain              3     62.7916667     20.9305556      0.36   0.7820 
 
 
proc glm data=wood; 
class pretreat stain board; 
model resistance = pretreat board(pretreat) stain pretreat*stain; 
random board(pretreat) / test; 
run; 
                                      Sum of 
Source                     DF        Squares    Mean Square   F Value   Pr > F 
Model                      11    1886.200000     171.472727     13.49   <.0001 
Error                      12     152.518333      12.709861 
Corrected Total            23    2038.718333 
 
Tests of Hypotheses for Mixed Model Analysis of Variance 
 
Dependent Variable: resistance 
 
   Source                    DF   Type III SS   Mean Square  F Value  Pr > F 
   pretreat                   1    782.041667    782.041667     4.03  0.1150 
   Error                      4    775.361667    193.840417 
   Error: MS(board(pretreat)) 
 
   Source                    DF   Type III SS   Mean Square  F Value  Pr > F 
   board(pretreat)            4    775.361667    193.840417    15.25  0.0001 
   stain                      3    266.005000     88.668333     6.98  0.0057 
   pretreat*stain             3     62.791667     20.930556     1.65  0.2309 
   Error: MS(Error)          12    152.518333     12.709861 
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