- 1) #'s 17.1, 17.2
- **a.** $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$; i = 1,...,10; j = 1,2,3,4,5 where y_{ij} is the percentage of ingredient in the paint for the j^{th} can in the i^{th} batch
 - μ is the mean percentage of the ingredient in the paint
 - α_i is a random effect due to the i^{th} batch
 - ε_{ii} is the random effect due to all other sources but batch

proc glm;

class batch;
model percentage = batch;
random batch / test;
run;

Source Type III Expected Mean Square

Batch Var(Error) + 5 Var(Batch)

Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: Percentage

Source DF Type III SS Mean Square F Value Pr > F
Batch 9 51.643000 5.738111 1.26 0.2889 ←
Error: MS(Error) 40 182.338000 4.558450

... there is not significant evidence that the batches exhibit inconsistency of ingredient.

proc mixed cl;

class batch;
model percentage = / solution cl;
random batch;
run;

Covariance Parameter Estimates

Cov Parm	Estimate	Alpha	Lower	Upper
Batch	0.2359	0.05	0.02897	2.5668E8
Residual	4.5584	0.05	3.0727	7.4628

proportion=0.2359/[0.2359 + 4.5584]

Solution for Fixed Effects

		Standard				
Effect	Estimate	Error	DF	t Value	Pr > t	Alpha
Intercept	5.2420	0.3388	9	15.47	<.0001	0.05
Effect	Lower	Upper				
Intercept	4.4757	6.0083				

```
2) #'s 17.3, 17.4
```

a. The following model is applicable to both scenarios. The difference is in the interpretation of parameters.

 $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$; i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5 where y_{ij} is the average daily weight gain of calves sired by Bull i

Scenario A:

 μ is the mean daily weight gain of all calves

 α_i is the fixed effect due to the i^{th} bull (sire)

 ε_{ij} is the random effect due to all other sources but bull

Scenario B:

 μ is the mean daily weight gain of all calves

 α_i is the random effect due to the i^{th} bull (sire)

 ε_{ii} is the random effect due to all other sources but bull

b. Scenario A:

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0$$
 versus $H_a:$ at least one $\alpha_i \neq 0$

Scenario B:

 $H_0: \sigma_\alpha^2 = 0$ versus $H_a: \sigma_\alpha^2 > 0$ where σ_α^2 is the variability of the sires

```
proc glm;
```

```
class bull;
model weightgain = bull ;
random bull / test;
run;

proc mixed cl;
class bull;
model weightgain = / solution cl;
random bull;
run;
```

2) #'s 17.3, 17.4 continued ...

Source Type III Expected Mean Square

Bull Var(Error) + 6 Var(Bull)

Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: WeightGain

Source DF Type III SS Mean Square F Value Pr > F

Bull 4 0.489147 0.122287 11.97 <.0001 ←

Error: MS(Error) 25 0.255483 0.010219

The p-value for a significant bull effect is 0.000 ... which implies there is a significant random effect due to bull.

Covariance Parameter Estimates

Cov Parm	Estimate	Alpha	Lower	Upper
Bull	0.01868	0.05	0.006266	0.2083
Residual	0.01022	0.05	0.006285	0.01947

proportion=0.01868/[0.01868 + 0.01022]

Solution for Fixed Effects

		Standard				
Effect	Estimate	Error	DF	t Value	Pr > t	Alpha
Intercept	1.0870	0.06385	4	17.03	<.0001	0.05

Solution for Fixed Effects

Effect Lower Upper Intercept 0.9097 1.2643