1) #'s 17.7 17.8

a. $y_{ijk} = \mu + \tau_i + \beta_j + \tau \beta_{ij} + \epsilon_{ijk}$; i = 1, ..., 10; j = 1, ..., 6; k = 1, 2 where y_{ijk} is the number of microorganisms in the k^{th} beer under the i^{th} process analyzed by the j^{th} lab μ is the mean number of microorganisms over all labs/processes τ_i is the random effect of the i^{th} process β_j is the random effect of the j^{th} lab $\tau \beta_{ij}$ is the random interaction effect of the i^{th} process and j^{th} lab

 ε_{ijk} is the random effect due to all other sources **b.** The table of expected mean squares is shown below

or o	
Source	Expected Mean Squares
Process	$\sigma_{\epsilon}^2 + 2\sigma_{r\beta}^2 + 12\sigma_{r}^2$
Lab	$\sigma_{\epsilon}^2 + 2\sigma_{\tau\beta}^2 + 20\sigma_{A}^2$
Process*Lab	$\sigma_{\epsilon}^2 + 2\sigma_{\tau\beta}^2$
Error	σ_c^2

c. To test for an interaction effect:

$$H_0: \sigma_{\tau\beta}^2 = 0$$
 versus $H_a: \sigma_{\tau\beta}^2 > 0$

To test for a process effect:

$$H_0: \sigma_r^2 = 0$$
 versus $H_a: \sigma_r^2 > 0$

To test for a lab effect:

$$H_0: \sigma_\beta^2 = 0$$
 versus $H_a: \sigma_\beta^2 > 0$

proc glm;

class lab process;
model count = lab process lab*process;
random lab process lab*process / test;
run;

1) #'s 17.7 17.8 continued ...

Tests of Hypotheses for Random Model Analysis of Variance

Dependent Variable: Count

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Lab Process	5 9	7409424 17648582	1481885 1960954	3.56 4.71	0.0085 0.0002
Error Error: MS(Lab*Process)	45	18747422	416609		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Lab*Process	45	18747422	416609	381.80	<.0001
Error: MS(Error)	60	65470	1091.175000		

Significant interaction and main effects for Lab & Process ...

proc mixed;

class lab process;
model count = ;
random lab process lab*process;
run;

Covariance Parameter
Estimates

Cov Parm	Estimate	
Lab Process	53264 128695	
Lab*Process	207759	050
Residual	1091.18	0.28%

It appears the effect due to process is greater because the proportion of variability associated with process is larger than that of lab. The interaction term is significant so it is not possible to disentangle the two effects completely.

2) # 17.9

If the factors are fixed, they are chosen before the experiment as the only factors of interest. If they are random factors, the treatments are randomly selected from a population of possible treatments.

When the factors are fixed, inference can only be used on those factors in the design. When the factors are random, the treatment levels are chosen from a population of possible treatments and inferences can therefore be extended to all treatments in the population, not simply those in the experimental design.

For fixed effects - estimate the parameters and do multiple comparisons ... For random effects - can estimate variance components ...

3) #'s 17.10 17.11

 $y_{ijk} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij} + \epsilon_{ijk}$; i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4; k = 1, 2 where y_{ijk} is the number of dead ants at the k^{th} mound at the i^{th} location using the j^{th} chemical μ is the mean number of dead ants across all possible locations treated with the four chemicals.

 α_i is a random effect due to the i^{th} location

 β_j is a fixed effect due to the j^{th} chemical

 $\alpha\beta_{ii}$ is a random effect due to the interaction of the i^{th} location and the j^{th} chemical

 ε_{iik} is the random effect due to all other sources but location and chemical

The AOV table is given here:

O v 111010 13 g1 v v						
Source	DF	SS	MS	EMS	F	P
Location	4	3.812	0.953	$\sigma_{\epsilon}^2 + 8\sigma_{\alpha}^2 + 2\sigma_{\alpha\beta}^2$	0.71	0.601
Chemical	3	180.133	60.044	$\sigma_{\epsilon}^2 + 2\sigma_{\alpha\beta}^2 + 10\theta_{\rm B}$	44.58	0.000
Interaction	12	16.158	1.347	$\sigma_{\epsilon}^2 + 2\sigma_{\alpha\beta}^2$	3.89	0.004
Error	20	6.925	0.346	σ_{ϵ}^2		
Total	39	207.028				

Source Type III Expected Mean Square

Location Var(Error) + 2 Var(Location*Chemical) + 8 Var(Location)

Chemical Var(Error) + 2 Var(Location*Chemical) + Q(Chemical)

Location*Chemical Var(Error) + 2 Var(Location*Chemical)

Dependent Variable: NumberKilled

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Location Chemical	4 3	3.811500 180.132750	0.952875 60.044250	0.71 44.59	0.6020 <.0001
Error Error: MS(Location*Chem	12 ical)	16.158500	1.346542		
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Location*Chemical	12	16.158500	1.346542	3.89	0.0037
Error: MS(Error)	20	6.925000	0.346250		
proc glm;					

proc glm;

class Location Chemical;

model NumberKilled = Location Chemical Location*Chemical;

random Location Location*Chemical / test;

run;

3) #'s 17.10 17.11 continued ...

The F-test for $H_0: \sigma_{\alpha\beta}^2 = 0$ versus $H_a: \sigma_{\alpha\beta}^2 > 0$ has p-value = 0.004. Therefore, there is significant evidence of an interaction between Locations and Chemicals.

The F-test for $H_0: \sigma_\alpha^2 = 0$ versus $H_\alpha: \sigma_\alpha^2 > 0$ has p-value = 0.601. Therefore, there is not significant evidence of an effect due to Locations.

The F-test for $H_0: \beta_1 = \ldots = \beta_4 = 0$ versus $H_a:$ at least one $\beta_i \neq 0$ has p-value < 0.0001. Therefore, there is significant evidence of an effect due to Chemicals.