1)

First, assign the numbers 1-15 to the 15 wholeplots. Create a random permutation of the numbers 1-15 and for the first 3 numbers (plots) in the random permutation, assign wholeplot treatment 1 A1, for the second 3 numbers (plots), assign wholeplot treatment 2 A2, ..., etc. Within each wholeplot, label the experimental units 1,2,3,4. Create a random permutation of these numbers to assign the B subplot treatments.

The model is as follows:

$$y_{ijk} = \mu + \tau_i + \delta_{ik} + \gamma_j + \tau \gamma_{ij} + \epsilon_{ijk} \; ; \; i = 1, 2, 3, 4, 5 \; ; \; \; j = 1, 2, 3, 4 \; ; \; k = 1, 2, 3$$

 τ_i is the fixed effect of the i^{th} level of A

 γ_j is the fixed effect of the j^{th} level of B

 $\tau \gamma_{ii}$ is the fixed interaction effect of the i^{th} level of A on the j^{th} level of B

 δ_{ik} is the random effect for the k^{th} wholeplot receiving the i^{th} level of A. The δ_{ik} are independent normal with mean 0 and variance σ_{δ}^2

 ϵ_{ijk} is the random error effect. They are independent normals with mean 0 and variance σ_{ϵ}^2 .

The AOV table is shown below:

Source	SS	df	EMS
A	SSA	4	$\sigma_{\epsilon}^2 + 4\sigma_{\delta}^2 + 12\theta_{\tau}$
Wholeplot Error	SS(A)	10	$\sigma_{\epsilon}^2 + 4\sigma_{\delta}^2$
В	SSB	3	$\sigma_{\epsilon}^2 + 15\theta_{\gamma}$
AB	SSAB	12	$\sigma_{\epsilon}^2 + 3\theta_{r\gamma}$
Subplot Error	SSE	30	σ_{ϵ}^2
Total	SSTot	59	-

2)

For each of the three blocks, assign each experimental unit (wholeplot) a number 1, 2, 3, 4, 5. Obtain a random permutation of the numbers 1, 2, 3, 4, 5 and assign treatment 1 A1 to the first, 2 A2 to the second, ..., etc. Once the wholeplots have been randomized in the blocks, assign each subplot a number 1, 2, 3, 4. Obtain a random permutation of those numbers 1, 2, 3, 4 and assign treatment 1 B1 to the first, 2 B2 to the second, and so on.

The model is as follows:

$$y_{ijk} = \mu + \tau_i + \beta_j + \tau \beta_{ij} + \gamma_k + \tau \gamma_{ik} + \epsilon_{ijk} \; ; \; i = 1, 2, 3, 4, 5 \; ; \; \; j = 1, 2, 3 \; ; \; k = 1, 2, 3, 4$$

 τ_i is the fixed effect of the ith level of A

 β_i is the block effect of the jth block

 $\tau \beta_{ii}$ is the interaction between the ith level of A and the jth block effect

 γ_k is the fixed effect of the kth level of B

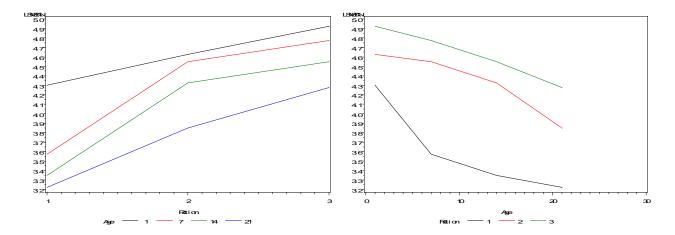
 $\tau \gamma_{ik}$ is the fixed interaction effect of the ith level of A on the kth level of B

The AOV table is shown below:

Source	SS	df	EMS
Block	SSBlock	2	sigmasq_error + 4sigmasq_ABlk + 20sigmasq_Blk
A	SSA	4	$\sigma_{\epsilon}^2 + 4\sigma_{\tau\beta}^2 + 12\theta_{\tau}$
A*Block	SSA*Block	8	$\sigma_{\epsilon}^2 + 4\sigma_{\tau\beta}^2$
В	SSB	3	$\sigma_{\epsilon}^2 + 15\theta_{\gamma}$
AB	SSAB	12	$\sigma_{\epsilon}^2 + 3\theta_{ry}$
Error	SSE	30	σ^2_ϵ
Total	SSTot	59	

```
3)
```

proc glm;



It appears the decrease in mean shear force with increased aging of the steaks is similar under all rations. Ration 1 acts somewhat differently (quicker drop off between 1 and 7 days), but overall, the plot suggests that the interaction term is not significant.

3) continues ...

The model is as follows:

$$y_{ijk} = \mu + \tau_i + \delta_{ik} + \gamma_j + \tau \gamma_{ij} + \varepsilon_{ijk}$$
; $i = 1, 2, 3$; $j = 1, 2, 3, 4$; $k = 1, 2, ..., 4$ where

 τ_i is the fixed effect of ration

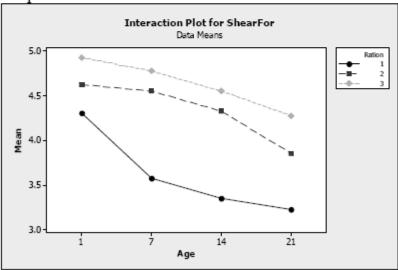
 δ_{ik} is the random effect of the k^{th} steer receiving ration i

 γ_j is the fixed effect of the j^{th} age

 $\tau \gamma_{ij}$ is the fixed interaction effect of the i^{th} ration with the j^{th} age

 ε_{iik} is the random effect due to all other sources of variation

The profile plot is shown here:



It appears the decrease in mean shear force with increased aging of the steaks is similar under all rations. Ration 1 acts somewhat differently (quicker drop off between 1 and 7 days), but overall, the plot suggests that the interaction term is not significant.

3) continues ...

The GLM Procedure Dependent Variable: y	-						
		Sum of					
Source	DF	Squares	Mean Square	F Value	Pr > F		
Model	20	52.25750000	2.61287500	47.97	<.0001		
Error	27	1.47062500	0.05446759				
Corrected Total	47	53.72812500	0.00110703				
331133334 13341	1,	001/2012000					
R-Square Coeff Var	Root	t MSE v Me	an				
0.972628 5.565018		0.233383 4.193750					
0.000010	0.2	1.1307	-				
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
RATION	2	8.79875000	4.39937500	80.77	<.0001		
RATION*REP	9	38.26187500	4.25131944	78.05	<.0001		
AGE	3	4.47229167	1.49076389				
AGE*RATION	6	0.72458333	0.12076389	2.22	0.0722		
Split-Plot Design	Ü	0.72100000	0.12070005	2.22	22		
spire rice besign							
The GLM Procedure							
Source	Type II:	I Expected Mean S	quare				
RATION Var(Error) + 4 Var(RATION*REP) + Q				ON, AGE*RATIO	N)		
RATION*REP	Var(Error) + 4 Var(RATION*REP)						
AGE		Var(Error) + Q(AGE, AGE*RATION)					
AGE*RATION	Var(Error) + Q(AGE*RATION)						
ACE IGITON	var (Eff.	or, . Q (Non laire	21,				
The GLM Procedure							
Tests of Hypotheses for	Mixed Mo	odel Analysis of	Variance				
Dependent Variable: y		-					
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
* RATION	2	8.798750	4.399375	1.03	0.3940		
Error	9	38.261875	4.251319	1.00	0.0510		
Error: MS(RATION*REP)		30.201073	1.201017				
* This test assumes one	or more	other fived affa	ote are zero				
Tills test assumes one	, or more	orner lived elle	ccs are zero.				
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
RATION*REP	9	38.261875	4.251319	78.05	<.0001		
* AGE	3	4.472292	1.490764	27.37	<.0001		
AGE*RATION	6	0.724583	0.120764	2.22	0.0722		
Error: MS(Error)	27	1.470625	0.054468	2.22	0.0722		
* This test assumes one							
TILES CESC ASSUMES ONE	: or more	orner tived ette	cus are zero.				

- **b.** The p-value to test for the significance of the interaction is 0.0722 which implies the interaction between ration and age is not significant. This will allow inference on the main effects.
- c. The p-value to test the significance of the effect of rations is 0.3940 > 0.05. Therefore, it can be concluded that there is not a significant effect of ration on mean shear force.
- **d.** The p-value to test the significance of the effect of age is < 0.0001. Therefore, it can be concluded that there is a significant effect of age on mean shear force.

- 3) continues ...
- **a.** To perform this experiment as a completely randomized design of the same number of samples, we would need 48 cows. First, assign a random number to the 48 cows and order them. For the first four on the list, assign ration 1, age 1, the next four, ration 1, age 7, and so on until all cows assigned.
- **b.** The gain in running the study as a completely randomized design is a large increase in the degrees of freedom for testing the ration effect.
- **c.** The split-plot design was chosen to significantly reduce the number of steers from 48 to 12. In the split plot design, there are fewer degrees of freedom for testing the ration effect, but the gain in using fewer steers may be worth the cost.