Addition and Subtraction with Polynomials MATH 101 College Algebra

J Robert Buchanan

Department of Mathematics

Fall 2022

Objectives

In this lesson we will learn to:

- identify polynomial expressions,
- classify certain polynomials as monomials, binomials, or trinomials,
- add and subtract polynomials,
- evaluate polynomials for given values of the variables.

Monomials

Definition

A **monomial in** *x* is an expression of the form

kxⁿ

where n is a positive whole number and k is any real number. Exponent n is called the **degree** of the monomial and k is called the **coefficient**.

Monomials

Definition

A **monomial in** *x* is an expression of the form

kxⁿ

where n is a positive whole number and k is any real number. Exponent n is called the **degree** of the monomial and k is called the **coefficient**.

Comments:

- ➤ A monomial may have more than one variable. In this case the degree is the sum of the exponents of the variables.
- ▶ A nonzero constant monomial has degree 0 (since $k = k \cdot x^0$).
- The constant 0 has no degree.

Polynomials

Definition

A **polynomial** is a monomial or the algebraic sum or difference of monomials.

The **degree of a polynomial** is the largest of the degrees of its terms after like terms have been combined.

The coefficient of the term with the largest degree is called the **leading coefficient**.

Polynomials with one, two, or three terms are called monomials, **binomials**, and **trinomials** respectively.

Polynomials of degree 0 or 1 are called **linear**, of degree 2 are called **quadratic**, and of degree 3 are called **cubic**.

Notation

We will write polynomials left to right in descending order of degree, for example

$$3x + 5x^2 - 10 + \frac{1}{3}x^3 = \frac{1}{3}x^3 + 5x^2 + 3x - 10.$$

Adding Polynomials

Add polynomials by combining like terms.

Adding Polynomials

Add polynomials by combining like terms.

$$(3x^2-2x+5)+(2x^2-x+3)$$

Adding Polynomials

Add polynomials by combining like terms.

$$(3x^2 - 2x + 5) + (2x^2 - x + 3)$$

$$= 3x^2 + 2x^2 - 2x - x + 5 + 3$$

$$= 5x^2 - 3x + 8$$

Subtracting Polynomials

To find the difference of two polynomials add the opposite of each term being subtracted.

Subtracting Polynomials

To find the difference of two polynomials add the opposite of each term being subtracted.

$$(5x^3 - 9x^2 - 10x + 12) - (3x^3 + 6x^2 - 7)$$

Subtracting Polynomials

To find the difference of two polynomials add the opposite of each term being subtracted.

$$(5x^3 - 9x^2 - 10x + 12) - (3x^3 + 6x^2 - 7)$$

$$= 5x^3 - 3x^3 - 9x^2 - 6x^2 - 10x + 12 + 7$$

$$= 2x^3 - 15x^2 - 10x + 19$$

Evaluation of Polynomials

We will sometimes use function notation when dealing with polynomials.

$$P(x) = x^3 - 8x^2 - 5x + 10$$

$$P(x, y) = 2x^2y - xy + 3x - 4y + 1$$

These functions are read as "P of x" and as "P of x and y".

Evaluation of Polynomials

We will sometimes use function notation when dealing with polynomials.

$$P(x) = x^3 - 8x^2 - 5x + 10$$

$$P(x, y) = 2x^2y - xy + 3x - 4y + 1$$

These functions are read as "P of x" and as "P of x and y".

To evaluate the polynomial at a number, substitute the number for the variable of the polynomial.