Composition of Functions and Inverse Functions

MATH 101 College Algebra

J Robert Buchanan

Department of Mathematics
Fall 2022

Objectives

In this lesson we will learn to:

- form the composition of two functions,
- determine if a function is one-to-one by using the horizontal line test,
- show that two functions are inverses by verifying that $f(g(x))=g(f(x))=x$,
- find the inverse of a one-to-one function, and
- graph the inverses of functions, by reflecting the graphs of the functions across the line $y=x$.

Composite Function

Definition

For two functions f and g, the composite function denoted $f \circ g$ is defined as

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ consists of those values of x in the domain of g for which $g(x)$ is in the domain of f.

Composite Function

Definition

For two functions f and g, the composite function denoted $f \circ g$ is defined as

$$
(f \circ g)(x)=f(g(x))
$$

The domain of $f \circ g$ consists of those values of x in the domain of g for which $g(x)$ is in the domain of f.
Remark: x is plugged into g to form $g(x)$ and then $g(x)$ is plugged into f to form $f(g(x))$.

Example (1 of 2)

Suppose $f(x)=\frac{1}{x+1}$ and $g(x)=x^{2}+x-3$ and find and simplify the following composite functions. What are their domains?

$$
f(g(x))=
$$

Example (1 of 2)

Suppose $f(x)=\frac{1}{x+1}$ and $g(x)=x^{2}+x-3$ and find and simplify the following composite functions. What are their domains?

$$
\begin{aligned}
f(g(x)) & =\frac{1}{g(x)+1} \\
& =\frac{1}{x^{2}+x-3+1} \\
& =\frac{1}{x^{2}+x-2} \\
& =\frac{1}{(x-1)(x+2)}
\end{aligned}
$$

Example (1 of 2)

Suppose $f(x)=\frac{1}{x+1}$ and $g(x)=x^{2}+x-3$ and find and simplify the following composite functions. What are their domains?

$$
\begin{aligned}
f(g(x)) & =\frac{1}{g(x)+1} \\
& =\frac{1}{x^{2}+x-3+1} \\
& =\frac{1}{x^{2}+x-2} \\
& =\frac{1}{(x-1)(x+2)}
\end{aligned}
$$

Domain of $f(g(x))$ is $(-\infty,-2) \cup(-2,1) \cup(1, \infty)$.

Example (2 of 2)

$$
g(f(x))=
$$

Example (2 of 2)

$$
\begin{aligned}
g(f(x)) & =(f(x))^{2}+f(x)-3 \\
& =\left(\frac{1}{x+1}\right)^{2}+\frac{1}{x+1}-3 \\
& =\frac{1}{(x+1)^{2}}+\frac{x+1}{(x+1)^{2}}-\frac{3(x+1)^{2}}{(x+1)^{2}} \\
& =\frac{1+x+1-3 x^{2}-6 x-3}{(x+1)^{2}} \\
& =\frac{-3 x^{2}-5 x-1}{(x+1)^{2}}
\end{aligned}
$$

Example (2 of 2)

$$
\begin{aligned}
g(f(x)) & =(f(x))^{2}+f(x)-3 \\
& =\left(\frac{1}{x+1}\right)^{2}+\frac{1}{x+1}-3 \\
& =\frac{1}{(x+1)^{2}}+\frac{x+1}{(x+1)^{2}}-\frac{3(x+1)^{2}}{(x+1)^{2}} \\
& =\frac{1+x+1-3 x^{2}-6 x-3}{(x+1)^{2}} \\
& =\frac{-3 x^{2}-5 x-1}{(x+1)^{2}}
\end{aligned}
$$

Domain of $g(f(x))$ is $(-\infty,-1) \cup(-1, \infty)$.

One-to-One Functions

Recall: for a function there is only one y value assigned to each x value in the domain. Graphically this can be verified using the vertical line test.

One-to-One Functions

Recall: for a function there is only one y value assigned to each x value in the domain. Graphically this can be verified using the vertical line test.

Definition

A function is a one-to-one function (or 1-1 function) if for each value of y in the range there is only one corresponding value of x in the domain.

One-to-One Functions

Recall: for a function there is only one y value assigned to each x value in the domain. Graphically this can be verified using the vertical line test.

Definition

A function is a one-to-one function (or 1-1 function) if for each value of y in the range there is only one corresponding value of x in the domain.

Theorem
A function is one-to-one if no horizontal line intersects the graph of the function at more than one point.

Inverse Functions

Definition

If f is a one-to-one function with ordered pairs of the form (x, y), then its inverse function, denoted f^{-1}, is also a one-to-one function with ordered pairs of the form (y, x).

Inverse Functions

Definition

If f is a one-to-one function with ordered pairs of the form (x, y), then its inverse function, denoted f^{-1}, is also a one-to-one function with ordered pairs of the form (y, x).

Remark: the superscript ${ }^{-1}$ in the notation f^{-1} is part of the notation or naming of inverse functions. The ${ }^{-1}$ is not an exponent.

$$
f^{-1}(x) \neq \frac{1}{f(x)}
$$

Graphs of Inverse Functions

- If f is one-to-one, then it has an inverse function f^{-1}.
- Thus if (x, y) is a point on the graph of $y=f(x)$, then (y, x) is a point on the graph of $x=f^{-1}(y)$.
- The graphs of f and f^{-1} are reflections of each other across the line $y=x$.

Example (1 of 2)

Example (2 of 2)

Properties of Inverse Functions

Theorem
If f and g are one-to-one functions and

$$
\begin{array}{ll}
f(g(x))=x & \text { for all } x \text { in } D_{g}, \text { and } \\
g(f(x))=x & \text { for all } x \text { in } D_{f},
\end{array}
$$

then f and g are inverse functions. We may write $g=f^{-1}$ and $f=g^{-1}$.

Example

Show that $f(x)=-2 x+3$ and $g(x)=\frac{3-x}{2}$ are inverses of each other.

Example

Show that $f(x)=-2 x+3$ and $g(x)=\frac{3-x}{2}$ are inverses of each other.

$$
\begin{aligned}
f(g(x)) & =-2 g(x)+3=-2\left(\frac{3-x}{2}\right)+3 \\
& =-(3-x)+3=x-3+3 \\
& =x \\
g(f(x)) & =\frac{3-f(x)}{2}=\frac{3-(-2 x+3)}{2} \\
& =\frac{3+2 x-3}{2}=\frac{2 x}{2} \\
& =x
\end{aligned}
$$

Finding Function Inverses

Steps: given a function $f(x)$,

1. let $y=f(x)$,
2. interchange y and x (that is, write $x=f(y)$),
3. in the new equation, solve for y in terms of x,
4. substitute $f^{-1}(x)$ for y.

Example

Find the inverse of $f(x)=3 x-1$.

Example

Find the inverse of $f(x)=3 x-1$.

$$
y=3 x-1
$$

Example

Find the inverse of $f(x)=3 x-1$.

$$
\begin{aligned}
& y=3 x-1 \\
& x=3 y-1
\end{aligned}
$$

Example

Find the inverse of $f(x)=3 x-1$.

$$
\begin{aligned}
y & =3 x-1 \\
x & =3 y-1 \\
x+1 & =3 y \\
y & =\frac{x+1}{3}
\end{aligned}
$$

Example

Find the inverse of $f(x)=3 x-1$.

$$
\begin{aligned}
y & =3 x-1 \\
x & =3 y-1 \\
x+1 & =3 y \\
y & =\frac{x+1}{3} \\
f^{-1}(x) & =\frac{x+1}{3}
\end{aligned}
$$

Example

Find the inverse of $f(x)=3 x-1$.

$$
\begin{aligned}
y & =3 x-1 \\
x & =3 y-1 \\
x+1 & =3 y \\
y & =\frac{x+1}{3} \\
f^{-1}(x) & =\frac{x+1}{3}
\end{aligned}
$$

