Introduction to Functions

MATH 101 College Algebra

J Robert Buchanan
Department of Mathematics

Fall 2022

Objectives

- Find the domain and range of a function.
- Determine whether a relation is a function.
- Use the vertical line test to determine whether a graph is the graph of a function.
- Express functions using proper functional notation.

Relations

Definition

- A relation is a set of ordered pairs of real numbers.
- The domain, D, of a relation is the set of all first coordinates in the relation.
- The range, R, of a relation is the set of all second coordinates in the relation.

Remark: When graphing relations we will place domain elements on the horizontal axis and range elements on the vertical axis.

Functions

Definition

A function is a relation in which each domain element is paired with exactly one corresponding range element.

Remarks:

- A relation is a function if each first coordinate appears only once.
- A relation is a function if no two ordered pairs have the same first coordinate.

Vertical Line Test

Remark: if we graph two points with the same first coordinate, the points will appear directly above and below each other, in other words, on the same vertical line.

Definition

If any vertical line intersects the graph of a relation at more than one point, then the relation is not the graph of a function.

Linear Functions

Definition

A linear function is a function represented by an equation of the form

$$
y=m x+b
$$

The domain of a linear function is the set of all real numbers,
$D=(-\infty, \infty)$.

Remarks:

- A vertical line is not a graph of a function.
- If the line is not horizontal, the range is all real numbers, $R=(-\infty, \infty)$.
- If the line is horizontal, the range is $R=\{b\}$.

Non-linear Functions

If we are given a function stated as a formula and no domain is explicitly stated, the domain will be assumed to be the set of all real x-values for which the formula is defined.

When determining the domain of a function, remember that:

- no denominator can equal 0 , and
- negative numbers are not allowed under square roots.

Function Notation

For ease of use we often give letter names to functions.
The linear function $y=m x+b$ may instead be written as

$$
f(x)=m x+b
$$

where the symbols $f(x)$ are read as " f of x ".
If we replace the symbol x by a real number, we are evaluating the function.

