Arc Length and Surface Area in Parametric **Equations** MATH 211, *Calculus II*

J. Robert Buchanan

Department of Mathematics

Fall 2021

Background

 \triangleright We have developed definite integral formulas for arc length and surface area for curves of the form $y = f(x)$ with *a* ≤ *x* ≤ *b*.

$$
s = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx
$$

$$
S = 2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^{2}} dx
$$

▶ Today we will develop formulas for calculating arc length and surface area for curves described parametrically.

Riemann Sum Approach

Suppose a curve is described by the parametric equations:

$$
\begin{array}{rcl} x & = & x(t) \\ y & = & y(t) \end{array}
$$

where $a \leq t \leq b$ and $x'(t)$ and $y'(t)$ are continuous as well.

Partition

Partition [*a*, *b*] into *n* equal subintervals with $\Delta t = \frac{b-a}{a}$ $\frac{1}{n}$ and *t*^{*k*} = *a* + *k*∆*t* for *k* = 0, 1, . . . , *n*.

$$
\Delta s_k = \sqrt{(x(t_k) - x(t_{k-1}))^2 + (y(t_k) - y(t_{k-1}))^2}
$$

=
$$
\sqrt{(x'(v_k)\Delta t)^2 + (y'(w_k)\Delta t)^2}
$$
 (by the MVT)
=
$$
\sqrt{(x'(v_k))^2 + (y'(w_k))^2} \Delta t
$$

$$
\approx \sqrt{(x'(w_k))^2 + (y'(w_k))^2} \Delta t
$$

Riemann Sum

Arc length

$$
s \approx \sum_{k=1}^{n} \sqrt{(x'(w_k))^2 + (y'(w_k))^2} \Delta t
$$

=
$$
\lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{(x'(w_k))^2 + (y'(w_k))^2} \Delta t
$$

=
$$
\int_{a}^{b} \sqrt{(x'(t))^2 + (y'(t))^2} dt
$$

Remark: the expression $d\mathbf{s} = \sqrt{(x'(t))^2 + (y'(t))^2} dt$ is called **differential arc length**.

Result

Theorem

For the curve defined parametrically by $x = x(t)$ *,* $y = y(t)$ *,* $a \le t \le b$, if $x'(t)$ *and y'*(*t*) *are continuous on* [*a*, *b*] *and the curve does not intersect itself (except possibly at a finite number of points), then the arc length s of the curve is given by*

$$
s=\int_a^b\sqrt{(x'(t))^2+(y'(t))^2}\,dt=\int_a^b\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}\,dt.
$$

Example

Find the arc length of the curve given by

$$
\begin{array}{rcl} x & = & 2t^2 \\ y & = & 2t^3 \end{array}
$$

for $0 \le t \le 2$.

Solution

$$
s = \int_0^2 \sqrt{(4t)^2 + (6t^2)^2} dt
$$

=
$$
\int_0^2 2t\sqrt{4+9t^2} dt
$$

Integrate by substitution, letting $u = 4 + 9t^2$ and $\frac{1}{9}$ *du* = 2*t dt*.

$$
s = \int_{4}^{40} \frac{1}{9} u^{1/2} du
$$

= $\frac{2}{27} u^{3/2} \Big|_{4}^{40}$
= $\frac{2}{27} (40\sqrt{40} - 8) = \frac{16}{27} (10\sqrt{10} - 1)$

Example

Find the arc length of the curve given by

$$
x = 3 \sin t
$$

$$
y = 3 \cos t - 3
$$

for $0 \le t \le 2\pi$.

Solution

$$
s = \int_0^{2\pi} \sqrt{(3 \cos t)^2 + (-3 \sin t)^2} dt
$$

=
$$
\int_0^{2\pi} \sqrt{9 \cos^2 t + 9 \sin^2 t} dt
$$

=
$$
\int_0^{2\pi} 3 dt
$$

=
$$
6\pi
$$

Brachistochrone Problem

Problem: suppose an object is to slide down a path in the *xy*-plane from the origin to a point below the origin but not on the *y*-axis. Which path should the object follow to accomplish the trip in the least time?

Physical Background

distance = speed × time

$$
d = |v|t
$$

Conservation of energy:

potential energy = kinetic energy
\n
$$
mgy = \frac{1}{2}m\left(\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\right)
$$

- ▶ To avoid confusion with "time" use the symbol *u* as the parameter of the parametric equations.
- \triangleright To simplify the mathematics we will assume that $q y > 0$.

Formula for Trip Time

Suppose the path is parameterized by $x = x(u)$, $y = y(u)$ for $0 \le u \le 1$, then

$$
mgy = \frac{1}{2}m\left(\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2\right)
$$

\n
$$
2gy = \left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2
$$

\n
$$
\frac{2gy}{\sqrt{2gy}} = (v(u))^2
$$

\n
$$
\sqrt{2gy} = |v(u)|.
$$

Therefore the trip time is

$$
t=\frac{d}{|v|}=\int_0^1\frac{\sqrt{\left(\frac{dx}{du}\right)^2+\left(\frac{dy}{du}\right)^2}}{\sqrt{2gy}}du=\frac{1}{\sqrt{2g}}\int_0^1\sqrt{\frac{\left(\frac{dx}{du}\right)^2+\left(\frac{dy}{du}\right)^2}{y}}du.
$$

Comparison of Paths

Suppose the object is to move from $(0,0)$ to $(\pi,2)$ along a straight line parameterized by

$$
\begin{array}{rcl} x & = & \pi u \\ y & = & 2u \end{array}
$$

for $0 < u < 1$. Find the time of travel.

Calculation of Travel Time

$$
t = \frac{1}{\sqrt{2g}} \int_0^1 \sqrt{\frac{(\pi)^2 + (2)^2}{2u}} du
$$

=
$$
\frac{\sqrt{\pi^2 + 4}}{2\sqrt{g}} \int_0^1 u^{-1/2} du
$$

=
$$
\left[\sqrt{\frac{\pi^2 + 4}{g}} u^{1/2} \right]_0^1
$$

$$
t = \sqrt{\frac{\pi^2 + 4}{g}}
$$

Comparison of Paths

Suppose the object is to move from $(0, 0)$ to $(\pi, 2)$ along a cycloid parameterized by

> $x = \pi u - \sin \pi u$ $y = 1 - \cos \pi y$

for $0 < u < 1$. Find the time of travel.

Calculation of Travel Time

$$
t = \frac{1}{\sqrt{2g}} \int_0^1 \sqrt{\frac{(\pi - \pi \cos \pi u)^2 + (\pi \sin \pi u)^2}{1 - \cos \pi u}} du
$$

\n
$$
= \frac{1}{\sqrt{2g}} \int_0^1 \sqrt{\frac{\pi^2 - 2\pi^2 \cos \pi u + \pi^2 \cos^2 \pi u + \pi^2 \sin^2 \pi u}{1 - \cos \pi u}} du
$$

\n
$$
= \frac{1}{\sqrt{2g}} \int_0^1 \sqrt{\frac{2\pi^2 - 2\pi^2 \cos \pi u}{1 - \cos \pi u}} du
$$

\n
$$
= \frac{\pi}{\sqrt{g}} \int_0^1 1 du
$$

\n
$$
t = \sqrt{\frac{\pi^2}{g}}
$$

Result

$$
\sqrt{\frac{\pi^2}{g}}<\sqrt{\frac{\pi^2+4}{g}}
$$

Even though the cycloid is a greater *distance* (arc length), it requires less *time*.

Surface Area

Geometrically we may think of the definite integral for the surface area of a solid of revolution as

$$
S = \int_{a}^{b} 2\pi \text{(radius)}(\text{arc length}) \, dx.
$$

Thus the surface generated when the parametric curve

$$
\begin{array}{rcl} x & = & x(t) \\ y & = & y(t) \end{array}
$$

for $a \le t \le b$ is revolved around the *x*-axis has surface area

$$
S = 2\pi \int_{a}^{b} |y(t)| \sqrt{(x'(t))^2 + (y'(t))^2} dt.
$$

Example

Find the surface area of the solid of revolution generated when the parametric curve

$$
\begin{array}{rcl} x & = & 3t \\ y & = & \sqrt{7}t + 1 \end{array}
$$

for $0 \le t \le 1$ is revolved around the *x*-axis.

Solution

Example

Find the surface area of the solid of revolution generated when the parametric curve

$$
\begin{array}{rcl} x & = & 4t^2 - 1 \\ y & = & 3 - 2t \end{array}
$$

for −2 ≤ *t* ≤ 0 is revolved around the *x*-axis.

Solution (1 of 2)

$$
S = 2\pi \int_{-2}^{0} (3 - 2t) \sqrt{(8t)^2 + (-2)^2} dt
$$

\n
$$
= 2\pi \int_{-2}^{0} (3 - 2t) \sqrt{64t^2 + 4} dt
$$

\n
$$
= 4\pi \int_{-2}^{0} (3 - 2t) \sqrt{16t^2 + 1} dt
$$

\n
$$
= 12\pi \int_{-2}^{0} \sqrt{16t^2 + 1} dt - 8\pi \int_{-2}^{0} t \sqrt{16t^2 + 1} dt
$$

 \blacktriangleright The first integral can be handled via the trigonometric substitution, $t=\frac{1}{4}$ $\displaystyle{\frac{1}{4}}$ tan θ and $\displaystyle{dt=\frac{1}{4}}$ $\frac{1}{4}$ sec² θ *d* θ .

 \blacktriangleright The second integral can be handled via the substitution, $u = 16t^2 + 1$ and $\frac{1}{32}$ *du* = *t dt*.

Solution (2 of 2)

$$
S = 12\pi \int_{-2}^{0} \sqrt{16t^2 + 1} dt - 8\pi \int_{-2}^{0} t\sqrt{16t^2 + 1} dt
$$

\n
$$
= 3\pi \int_{-\tan^{-1}8}^{0} \sec^3 \theta d\theta - \frac{\pi}{4} \int_{65}^{1} u^{1/2} du
$$

\n
$$
= \left[\frac{3\pi}{2} (\sec \theta \tan \theta - \ln[\sec \theta + \tan \theta])\right]_{-\tan^{-1}8}^{0} - \left[\left(\frac{\pi}{6} u^{3/2}\right)\right]_{65}^{1}
$$

\n
$$
= 12\sqrt{65}\pi + \frac{3\pi}{2} \ln(8 + \sqrt{65}) - \frac{\pi}{6} (65\sqrt{65} - 1) \approx 590.89
$$

Homework

▶ Exercises: 109, 113, 117, 121, 125/handout