Comparison Test MATH 211, Calculus II

J. Robert Buchanan

Department of Mathematics

Fall 2021

Introduction

Remarks:

- Determining the convergence or divergence of a series from its sequence of partial sums is difficult for most series.
- Today we will work only with positive term series, i.e., series

$$\sum_{k=1}^{\infty} a_k \text{ where } a_k \ge 0 \text{ for all } k.$$

We need only concern ourselves with the infinite "tail" of a series since for any fixed N, the sum of the first N terms of a series must be finite.

Comparison Tests

It is helpful to compare a new infinite series to another infinite series whose convergence or divergence is already known.

Theorem (Comparison Test)

Suppose that $0 \le a_k \le b_k$, for all k.

- 1. If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges too.
- 2. If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges too.

Proof

Let B_n be the nth partial sum of the convergent series $\sum_{k=1}^{\infty} b_k$ and let B be its sum. Let A_n be the nth partial sum of the series $\sum_{k=1}^{\infty} a_k$. Since $0 \le a_k \le b_k$ then

$$0 \le A_n \le B_n \le B$$
.

Thus $\{A_n\}_{n=1}^{\infty}$ is an increasing and bounded sequence and hence converges.

Questions

Questions:

- If $\sum_{k=1}^{\infty} a_k$ converges, what can you say about $\sum_{k=1}^{\infty} b_k$?
- If $\sum_{k=1}^{\infty} b_k$ diverges, what can you say about $\sum_{k=1}^{\infty} a_k$?

Examples

Use the Comparison Test to determine if the following series converge or diverge.

1.
$$\sum_{k=1}^{\infty} \frac{k}{2^k(k+1)}$$
 Hint: $\frac{k}{2^k(k+1)} < \frac{1}{2^k}$

2.
$$\sum_{k=1}^{\infty} \frac{k}{5k^2 - 4}$$
 Hint: $\frac{k}{5k^2 - 4} > \frac{1}{5k}$

3.
$$\sum_{k=1}^{\infty} \frac{\cos^{-1}(1/k)}{k^{3/2}} \quad \text{Hint: } \frac{\cos^{-1}(1/k)}{k^{3/2}} < \frac{\pi}{k^{3/2}}$$

$$\sum_{k=1}^{\infty} \frac{k}{2^k(k+1)}$$

Since

$$0<\frac{k}{2^k(k+1)}<\frac{1}{2^k}$$

and

$$\sum_{k=1}^{\infty} \frac{1}{2^k} = \sum_{k=1}^{\infty} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^{k-1} = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^k = \frac{1/2}{1 - (1/2)} = 1$$

(geometric series), then the smaller series

$$\sum_{k=1}^{\infty} \frac{k}{2^k (k+1)}$$
 converges.

$$\sum_{k=1}^{\infty} \frac{k}{5k^2 - 4}$$

Since

$$0<\frac{1}{5k}<\frac{k}{5k^2-4}$$

and

$$\int_{1}^{\infty} \frac{1}{5x} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{1}{5x} dx = \lim_{R \to \infty} \frac{1}{5} \ln R = \infty$$

according to the Integral Test, then the larger series

$$\sum_{k=1}^{\infty} \frac{k}{5k^2 - 4}$$
 diverges.

$$\sum_{k=1}^{\infty} \frac{\cos^{-1}(1/k)}{k^{3/2}}$$

Since

$$0<\frac{\cos^{-1}(1/k)}{k^{3/2}}<\frac{\pi}{k^{3/2}}$$
 and

anu

$$\sum_{k=1}^{\infty} \frac{\pi}{k^{3/2}} = \pi \sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$$

converges by the *p*-series test, then the smaller series

$$\sum_{k=0}^{\infty} \frac{\cos^{-1}(1/k)}{k^{3/2}}$$
 converges.

Limit Comparison Test

Sometimes the expression a_k in the infinite series $\sum_{k=1}^{\infty} a_k$ is too complicated to compare with the b_k of another series for all k.

Theorem (Limit Comparison Test)

Suppose that $a_k > 0$, and $b_k > 0$ and there is a finite L > 0 such that $\lim_{k \to \infty} \frac{a_k}{b_k} = L$. Then either $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both converge or they both diverge.

Examples

Use the Limit Comparison Test to determine whether the following infinite series converge or diverge.

1.
$$\sum_{k=2}^{\infty} \frac{1}{\sqrt{4k^2-7}}$$
 Hint: limit compare with $\frac{1}{k}$

2.
$$\sum_{k=1}^{\infty} \frac{k}{k^4 + 1}$$
 Hint: limit compare with $\frac{1}{k^3}$

3.
$$\sum_{k=1}^{\infty} \frac{\sqrt{k}}{k+2}$$
 Hint: limit compare with $\frac{1}{k^{1/2}}$

$$\sum_{k=2}^{\infty} \frac{1}{\sqrt{4k^2 - 7}}$$

$$\lim_{k \to \infty} \frac{\frac{1}{\sqrt{4k^2 - 7}}}{\frac{1}{k}} = \lim_{k \to \infty} \frac{k}{\sqrt{4k^2 - 7}} = \lim_{k \to \infty} \frac{1}{\sqrt{4 - \frac{7}{k^2}}} = \frac{1}{2} < \infty$$

Since L=1/2 and since $\sum_{k=2}^{\infty}\frac{1}{k}$ diverges by the *p*-series test, then

$$\sum_{k=2}^{\infty} \frac{1}{\sqrt{4k^2 - 7}}$$
 diverges.

$$\sum_{k=1}^{\infty} \frac{k}{k^4 + 1}$$

$$\lim_{k \to \infty} \frac{\frac{\kappa}{k^4 + 1}}{\frac{1}{k^2}} = \lim_{k \to \infty} \frac{k^4}{k^4 + 1} = \lim_{k \to \infty} \frac{1}{1 + \frac{1}{k^4}} = 1 < \infty$$

Since L=1 and since $\sum_{k=1}^{\infty}\frac{1}{k^3}$ converges by the p-series test, then

$$\sum_{k=1}^{\infty} \frac{k}{k^4 + 1}$$
 converges.

$$\sum_{k=1}^{\infty} \frac{\sqrt{k}}{k+2}$$

$$\lim_{k\to\infty}\frac{\frac{\sqrt[K]{k+2}}{\frac{1}{k^{1/2}}}=\lim_{k\to\infty}\frac{k}{k+2}=\lim_{k\to\infty}\frac{1}{1+\frac{2}{k}}=1<\infty$$

Since L=1 and since $\sum_{k=1}^{\infty} \frac{1}{k^{1/2}}$ diverges by the p-series test, then

$$\sum_{k=1}^{\infty} \frac{\sqrt{k}}{k+2}$$
 diverges.

Determine whether the following series converges or diverges.

$$\sum_{k=1}^{\infty} 2^{-k} a_k \text{ where } a_k \text{ is shown below}$$

Determine whether the following series converges or diverges.

$$\sum_{k=1}^{\infty} \sin\left(\frac{1}{k}\right)$$

Determine whether the following series converges or diverges.

$$\frac{1}{1} + \frac{1}{\ln 2} + \frac{1}{3} + \frac{1}{\ln 4} + \frac{1}{5} + \frac{1}{\ln 6} + \cdots$$

Suppose $\sum_{k=1}^{\infty} a_k$ converges and $0 < a_k < 1$ for all $k \in \mathbb{N}$.

Determine whether the following series converges or diverges.

$$\sum_{k=1}^{\infty} (a_k)^2$$

Solution

If $0 < a_k < 1$ for all $k \in \mathbb{N}$ then

$$0 < (a_k)^2 < a_k < 1 \text{ for all } k \in \mathbb{N}.$$

If $\sum_{k=1}^{\infty} a_k$ converges, then by the Comparison Test, $\sum_{k=1}^{\infty} (a_k)^2$ converges.

Homework

- ▶ Read Section 5.4
- ► Exercises: 195, 199, 203, ..., 219