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Introduction

Remarks:
» Determining the convergence or divergence of a series
from its sequence of partial sums is difficult for most
series.

» Today we will work only with positive term series, i.e.,
series

o
> a where  ax >0 for all k.
p

» We need only concern ourselves with the infinite “tail” of a
series since for any fixed N, the sum of the first N terms of
a series must be finite.



Comparison Tests

It is helpful to compare a new infinite series to another infinite
series whose convergence or divergence is already known.

Theorem (Comparison Test)
Suppose that 0 < ay < by, for all k.

1. If Z by converges, then Z ay converges too.
k=1 k=1

2. Ify " ay diverges, then ) _ by diverges too.
p p



Proof

o0

Let B, be the nth partial sum of the convergent series Z by
k=1
and let B be its sum. Let A, be the nth partial sum of the series

Zak. Since 0 < a, < by then
p

0<A, <B,<B

Thus {Ap};2 4 is an increasing and bounded sequence and
hence converges.



Questions

Questions:

> |If Z ax converges, what can you say about Z by ?
k=1 k=1

> |If Z by diverges, what can you say about Z ax?
k=1 k=1



Examples

Use the Comparison Test to determine if the following series
converge or diverge.
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(geometric series), then the smaller series
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according to the Integral Test, then the larger series
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Limit Comparison Test

o0
Sometimes the expression ai in the infinite series Z ay is too

k=1
complicated to compare with the by of another series for all k.

Theorem (Limit Comparison Test)
Suppose that ak >0,and b, >0 and there is a finite L > 0

such that I|_>nc1>o b—k — L. Then e/t/verkz‘1 a and; by both

converge or they both diverge.



Examples

Use the Limit Comparison Test to determine whether the
following infinite series converge or diverge.
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Since L = 1/2 and since Z K diverges by the p-series test,
k=2
then

diverges.
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Since L = 1 and since Z 3 converges by the p-series test,
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then
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Since L = 1 and since Z K2 diverges by the p-series test,
k=1

then
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Challenging Examples
Determine whether the following series converges or diverges.
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Challenging Examples

Determine whether the following series converges or diverges.
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Challenging Examples

Determine whether the following series converges or diverges.
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Challenging Examples

Suppose Z ay converges and 0 < g, < 1 forall k e N.
k=1

Determine whether the following series converges or diverges.

o0

(ax)?
k=

—_

Solution
If0 < ax <1 forallk € N then

0 < (ax)® <ax <1forallk eN.

If > ay converges, then by the Comparison Test, > (a)?

k=1 k=1
converges.



Homework

» Read Section 5.4
» Exercises: 195, 199, 203, ..., 219



