Bisection Method MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

Introduction

- In mathematics we nearly always need to solve equations.
- Most interesting equations cannot be solved algebraically.

Introduction

- In mathematics we nearly always need to solve equations.
- Most interesting equations cannot be solved algebraically.

$$e^{x}-4x=0$$

Introduction

- In mathematics we nearly always need to solve equations.
- Most interesting equations cannot be solved algebraically.

$$e^x - 4x = 0$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

We begin to study a set of root-finding techniques, starting with the simplest, the **Bisection Method**.

Bisection Technique

- The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.
- The Bisection Method operates under the conditions necessary for the Intermediate Value Theorem to hold.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Bisection Technique

- The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.
- The Bisection Method operates under the conditions necessary for the Intermediate Value Theorem to hold.

(ロ) (同) (三) (三) (三) (○) (○)

Suppose $f \in C[a, b]$ and f(a) f(b) < 0, then there exists $p \in (a, b)$ such that f(p) = 0.

Bisection Technique

- The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.
- The Bisection Method operates under the conditions necessary for the Intermediate Value Theorem to hold.

(ロ) (同) (三) (三) (三) (○) (○)

Suppose $f \in C[a, b]$ and f(a) f(b) < 0, then there exists $p \in (a, b)$ such that f(p) = 0.

Remark: The root *p* found is not necessarily unique.

Algorithm

Given the continuous function f(x) on the interval [a, b] where f(a) f(b) < 0: **INPUT** endpoints *a*, *b*, tolerance ϵ , maximum iterations *N*. STEP 1 Set i = 1; FA = f(a). STEP 2 While i < N do Steps 3–6. STEP 3 Set $p = a + \frac{b-a}{2}$; FP = f(p). STEP 4 If FP = 0 or $\frac{b-a}{2} < \epsilon$ then OUTPUT p; STOP. STEP 5 Set i = i + 1. STEP 6 If $FA \cdot FP > 0$ then set a = p; FA = FP, else b = p.

STEP 7 OUTPUT "Method failed after N iterations."; STOP.

Illustration

・ロト・(四ト・(日下・(日下・))への)

Stopping Criterion

The Bisection Method generates a sequence $\{p_n\}_{n=1}^N$.

We used a stopping criterion of

f(*p_n*) = 0 (in case we hit the root "exactly"), or
 b − *a*/2 < *ϵ* (the original interval is halved enough times that the distance between *p_{n-1}* and *p_n* is smaller than a specified tolerance), or

(ロ) (同) (三) (三) (三) (○) (○)

• i > N (the maximum number of iterations is reached).

Alternative Stopping Criteria

Other logic for halting the algorithm includes:

$$|p_n - p_{n-1}| < \epsilon$$

$$|f(p_n)| < \epsilon$$

$$\frac{|p_n - p_{n-1}|}{|p_n|} < \epsilon \text{ provided } p_n \neq 0$$

$$\frac{|p_n - p_{n-1}|}{\min\{|a_n|, |b_n|\}} < \epsilon$$

Remark: the stopping criterion chosen will depend on the equation being solved. There is no "best" criterion.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Approximate the root of $f(x) = e^x - 4x$ on [0, 1] with $\epsilon = 10^{-2}$ and N = 10.

Approximate the root of $f(x) = e^x - 4x$ on [0, 1] with $\epsilon = 10^{-2}$ and N = 10.

n	an	pn	bn	$f(p_n)$
1	0.0	0.5	1.0	-0.351279
2	0.0	0.25	0.5	0.284025
3	0.25	0.375	0.5	-0.0450086
4	0.25	0.3125	0.375	0.116838
5	0.3125	0.34375	0.375	0.035226
6	0.34375	0.359375	0.375	-0.00506614
7	0.34375	0.351563	0.359375	0.0150366

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Approximate the root of $f(x) = e^x - 4x$ on [0, 1] with $\epsilon = 10^{-2}$ and N = 10.

	n	a _n	pn	b _n	$f(p_n)$
-	1	0.0	0.5	1.0	-0.351279
	2	0.0	0.25	0.5	0.284025
	3	0.25	0.375	0.5	-0.0450086
	4	0.25	0.3125	0.375	0.116838
	5	0.3125	0.34375	0.375	0.035226
	6	0.34375	0.359375	0.375	-0.00506614
	7	0.34375	0.351563	0.359375	0.0150366

Remark: $p \approx 0.357403$ and hence p_6 is a better approximation than p_7 .

• The Bisection Method requires the least assumptions on f(x),

Comments

• The Bisection Method requires the least assumptions on f(x),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

the Bisection Method is simple to program,

Comments

• The Bisection Method requires the least assumptions on f(x),

- the Bisection Method is simple to program,
- the Bisection Method always converges to a solution, but

Comments

• The Bisection Method requires the least assumptions on f(x),

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- the Bisection Method is simple to program,
- the Bisection Method always converges to a solution, but
- the Bisection Method is slow to converge.

Rate of Convergence (1 of 2)

Theorem

If $f \in C[a, b]$ and f(a) f(b) < 0, the Bisection Method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a root p of f with the property that

$$|p_n-p|\leq rac{b-a}{2^n},\quad \text{for }n\geq 1.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Rate of Convergence (2 of 2)

Proof. For all $n \ge 1$, $b_n - a_n \le \frac{b-a}{2^{n-1}}$ and $a_n .$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Rate of Convergence (2 of 2)

Proof.

For all *n* ≥ 1, *b_n* − *a_n* ≤
$$\frac{b-a}{2^{n-1}}$$
 and *a_n* < *p* < *b_n*.
For all *n* ≥ 1, *p_n* = $\frac{a_n+b_n}{2}$ and hence

$$|p_n-p|\leq \frac{b_n-a_n}{2}=\frac{b-a}{2^n}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rate of Convergence (2 of 2)

Proof.

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x) = e^x - 4x$ on [0, 1] with $\epsilon = 10^{-4}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x) = e^x - 4x$ on [0, 1] with $\epsilon = 10^{-4}$.

$$|p_n - p| \leq rac{b-a}{2^n} \ rac{1-0}{2^n} \leq 10^{-4} \ 2^n \geq 10^4 \ n > 14$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x) = x^3 + x - 4$ on [1,4] with $\epsilon = 10^{-4}$. Find the approximation with this accuracy.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x) = x^3 + x - 4$ on [1,4] with $\epsilon = 10^{-4}$. Find the approximation with this accuracy.

$$|p_n - p| \le rac{b-a}{2^n}$$

 $rac{4-1}{2^n} \le 10^{-4}$
 $2^n \ge 3 imes 10^4$
 $n \ge 15$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Approximation

n	an	b _n	pn	$f(p_n)$
1	1.0	4.0	2.5	14.125
2	1.0	2.5	1.75	3.10938
3	1.0	1.75	1.375	-0.0253906
4	1.375	1.75	1.5625	1.3772
5	1.375	1.5625	1.46875	0.637177
6	1.375	1.46875	1.42188	0.29652
7	1.375	1.42188	1.39844	0.13326
8	1.375	1.39844	1.38672	0.0533635
9	1.375	1.38672	1.38086	0.0138442
10	1.375	1.38086	1.37793	-0.00580869
11	1.37793	1.38086	1.37939	0.00400888
12	1.37793	1.37939	1.37866	-0.000902119
13	1.37866	1.37939	1.37903	0.00155283
14	1.37866	1.37903	1.37885	0.000325216
15	1.37866	1.37885	1.37875	-0.000288487

Homework

Read Section 2.1.

Exercises: 3a, 11, 13, 17, 19, 20

