Bisection Method
 MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

Introduction

- In mathematics we nearly always need to solve equations.
- Most interesting equations cannot be solved algebraically.

Introduction

- In mathematics we nearly always need to solve equations.
- Most interesting equations cannot be solved algebraically.

$$
e^{x}-4 x=0
$$

Introduction

- In mathematics we nearly always need to solve equations.
- Most interesting equations cannot be solved algebraically.

$$
e^{x}-4 x=0
$$

- We begin to study a set of root-finding techniques, starting with the simplest, the Bisection Method.

Bisection Technique

- The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.
- The Bisection Method operates under the conditions necessary for the Intermediate Value Theorem to hold.

Bisection Technique

- The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.
- The Bisection Method operates under the conditions necessary for the Intermediate Value Theorem to hold.

Suppose $f \in \mathcal{C}[a, b]$ and $f(a) f(b)<0$, then there exists $p \in(a, b)$ such that $f(p)=0$.

Bisection Technique

- The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.
- The Bisection Method operates under the conditions necessary for the Intermediate Value Theorem to hold.

Suppose $f \in \mathcal{C}[a, b]$ and $f(a) f(b)<0$, then there exists $p \in(a, b)$ such that $f(p)=0$.

Remark: The root p found is not necessarily unique.

Algorithm

Given the continuous function $f(x)$ on the interval $[a, b]$ where $f(a) f(b)<0$:

INPUT endpoints a, b, tolerance ϵ, maximum iterations N.
STEP 1 Set $i=1 ; F A=f(a)$.
STEP 2 While $i \leq N$ do Steps 3-6.
STEP 3 Set $p=a+\frac{b-a}{2} ; F P=f(p)$.
STEP 4 If $F P=0$ or $\frac{b-a}{2}<\epsilon$ then OUTPUT p; STOP.
STEP 5 Set $i=i+1$.
STEP 6 If $F A \cdot F P>0$ then set $a=p ; F A=F P$, else $b=p$.
STEP 7 OUTPUT "Method failed after N iterations."; STOP.

Illustration

Stopping Criterion

The Bisection Method generates a sequence $\left\{p_{n}\right\}_{n=1}^{N}$.
We used a stopping criterion of

- $f\left(p_{n}\right)=0$ (in case we hit the root "exactly"), or
- $\frac{b-a}{2}<\epsilon$ (the original interval is halved enough times that the distance between p_{n-1} and p_{n} is smaller than a specified tolerance), or
- $i>N$ (the maximum number of iterations is reached).

Alternative Stopping Criteria

Other logic for halting the algorithm includes:

- $\left|p_{n}-p_{n-1}\right|<\epsilon$
- $\left|f\left(p_{n}\right)\right|<\epsilon$
- $\frac{\left|p_{n}-p_{n-1}\right|}{\left|p_{n}\right|}<\epsilon$ provided $p_{n} \neq 0$
$-\frac{\left|p_{n}-p_{n-1}\right|}{\min \left\{\left|a_{n}\right|,\left|b_{n}\right|\right\}}<\epsilon$
Remark: the stopping criterion chosen will depend on the equation being solved. There is no "best" criterion.

Example

Approximate the root of $f(x)=e^{x}-4 x$ on $[0,1]$ with $\epsilon=10^{-2}$ and $N=10$.

Example

Approximate the root of $f(x)=e^{x}-4 x$ on $[0,1]$ with $\epsilon=10^{-2}$ and $N=10$.

n	a_{n}	p_{n}	b_{n}	$f\left(p_{n}\right)$
1	0.0	0.5	1.0	-0.351279
2	0.0	0.25	0.5	0.284025
3	0.25	0.375	0.5	-0.0450086
4	0.25	0.3125	0.375	0.116838
5	0.3125	0.34375	0.375	0.035226
6	0.34375	0.359375	0.375	-0.00506614
7	0.34375	0.351563	0.359375	0.0150366

Example

Approximate the root of $f(x)=e^{x}-4 x$ on $[0,1]$ with $\epsilon=10^{-2}$ and $N=10$.

n	a_{n}	p_{n}	b_{n}	$f\left(p_{n}\right)$
1	0.0	0.5	1.0	-0.351279
2	0.0	0.25	0.5	0.284025
3	0.25	0.375	0.5	-0.0450086
4	0.25	0.3125	0.375	0.116838
5	0.3125	0.34375	0.375	0.035226
6	0.34375	0.359375	0.375	-0.00506614
7	0.34375	0.351563	0.359375	0.0150366

Remark: $p \approx 0.357403$ and hence p_{6} is a better approximation than p_{7}.

Comments

- The Bisection Method requires the least assumptions on $f(x)$,

Comments

- The Bisection Method requires the least assumptions on $f(x)$,
- the Bisection Method is simple to program,

Comments

- The Bisection Method requires the least assumptions on $f(x)$,
- the Bisection Method is simple to program,
- the Bisection Method always converges to a solution, but

Comments

- The Bisection Method requires the least assumptions on $f(x)$,
- the Bisection Method is simple to program,
- the Bisection Method always converges to a solution, but
- the Bisection Method is slow to converge.

Rate of Convergence (1 of 2)

Theorem
If $f \in \mathcal{C}[a, b]$ and $f(a) f(b)<0$, the Bisection Method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ approximating a root p of f with the property that

$$
\left|p_{n}-p\right| \leq \frac{b-a}{2^{n}}, \quad \text { for } n \geq 1
$$

Rate of Convergence (2 of 2)

Proof.

- For all $n \geq 1, b_{n}-a_{n} \leq \frac{b-a}{2^{n-1}}$ and $a_{n}<p<b_{n}$.

Rate of Convergence (2 of 2)

Proof.

- For all $n \geq 1, b_{n}-a_{n} \leq \frac{b-a}{2^{n-1}}$ and $a_{n}<p<b_{n}$.
- For all $n \geq 1, p_{n}=\frac{a_{n}+b_{n}}{2}$ and hence

$$
\left|p_{n}-p\right| \leq \frac{b_{n}-a_{n}}{2}=\frac{b-a}{2^{n}}
$$

Rate of Convergence (2 of 2)

Proof.

- For all $n \geq 1, b_{n}-a_{n} \leq \frac{b-a}{2^{n-1}}$ and $a_{n}<p<b_{n}$.
- For all $n \geq 1, p_{n}=\frac{a_{n}+b_{n}}{2}$ and hence

$$
\left|p_{n}-p\right| \leq \frac{b_{n}-a_{n}}{2}=\frac{b-a}{2^{n}}
$$

- Therefore $p_{n}=p+O\left(\frac{1}{2^{n}}\right)$.

Example

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x)=e^{x}-4 x$ on $[0,1]$ with $\epsilon=10^{-4}$.

Example

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x)=e^{x}-4 x$ on $[0,1]$ with $\epsilon=10^{-4}$.

$$
\begin{aligned}
\left|p_{n}-p\right| & \leq \frac{b-a}{2^{n}} \\
\frac{1-0}{2^{n}} & \leq 10^{-4} \\
2^{n} & \geq 10^{4} \\
n & \geq 14
\end{aligned}
$$

Example

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x)=x^{3}+x-4$ on [1,4] with $\epsilon=10^{-4}$. Find the approximation with this accuracy.

Example

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x)=x^{3}+x-4$ on [1,4] with $\epsilon=10^{-4}$. Find the approximation with this accuracy.

$$
\begin{aligned}
\left|p_{n}-p\right| & \leq \frac{b-a}{2^{n}} \\
\frac{4-1}{2^{n}} & \leq 10^{-4} \\
2^{n} & \geq 3 \times 10^{4} \\
n & \geq 15
\end{aligned}
$$

Approximation

n	a_{n}	b_{n}	p_{n}	$f\left(p_{n}\right)$
1	1.0	4.0	2.5	14.125
2	1.0	2.5	1.75	3.10938
3	1.0	1.75	1.375	-0.0253906
4	1.375	1.75	1.5625	1.3772
5	1.375	1.5625	1.46875	0.637177
6	1.375	1.46875	1.42188	0.29652
7	1.375	1.42188	1.39844	0.13326
8	1.375	1.39844	1.38672	0.0533635
9	1.375	1.38672	1.38086	0.0138442
10	1.375	1.38086	1.37793	-0.00580869
11	1.37793	1.38086	1.37939	0.00400888
12	1.37793	1.37939	1.37866	-0.000902119
13	1.37866	1.37939	1.37903	0.00155283
14	1.37866	1.37903	1.37885	0.000325216
15	1.37866	1.37885	1.37875	-0.000288487

Homework

- Read Section 2.1.
- Exercises: 3a, 11, 13, 17, 19, 20

