Chebyshev Polynomials and Economization of Power Series

MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Background

► The **Chebyshev polynomials** denoted $T_n(x)$ for n = 0, 1, ... are a set of orthogonal polynomials on the open interval (-1, 1) with respect to the weight function $w(x) = (1 - x^2)^{-1/2}$.

A D F A 同 F A E F A E F A Q A

Starting with $T_0(x) = 1$ we could use the **Gram-Schmidt** process to build the orthogonal set.

Background

► The **Chebyshev polynomials** denoted $T_n(x)$ for n = 0, 1, ... are a set of orthogonal polynomials on the open interval (-1, 1) with respect to the weight function $w(x) = (1 - x^2)^{-1/2}$.

- Starting with T₀(x) = 1 we could use the Gram-Schmidt process to build the orthogonal set.
- We will follow an alternative procedure to describe all the Chebyshev polynomials.

Background

- ► The **Chebyshev polynomials** denoted $T_n(x)$ for n = 0, 1, ... are a set of orthogonal polynomials on the open interval (-1, 1) with respect to the weight function $w(x) = (1 x^2)^{-1/2}$.
- Starting with T₀(x) = 1 we could use the Gram-Schmidt process to build the orthogonal set.
- We will follow an alternative procedure to describe all the Chebyshev polynomials.
- The Chebyshev polynomials have important applications for
 - optimal placement of nodes to minimize error in Lagrange interpolation, and
 - reducing the degree of an approximating polynomial with minimal loss of accuracy.

Definition of the Chebyshev Polynomials

Definition For $x \in [-1, 1]$ define the *n*th Chebyshev polynomial as

 $T_n(x) = \cos[n \arccos x].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition of the Chebyshev Polynomials

Definition For $x \in [-1, 1]$ define the *n*th Chebyshev polynomial as

 $T_n(x) = \cos[n \arccos x].$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Claim: $T_n(x)$ is a polynomial in x of degree n for n = 0, 1, ...

We can readily see that

$$T_0(x) = \cos[0 \arccos x] = 1$$

$$T_1(x) = \cos[\arccos x] = x.$$

• When $n \ge 1$ substitute $\theta = \arccos x$, then

 $T_n(\theta) = \cos[n\theta].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We can readily see that

$$\begin{aligned} T_0(x) &= \cos[0\arccos x] = 1 \\ T_1(x) &= \cos[\arccos x] = x. \end{aligned}$$

• When $n \ge 1$ substitute $\theta = \arccos x$, then

$$T_n(\theta) = \cos[n\,\theta].$$

Using the sum and difference of angles formula for the cosine we see that

$$T_{n-1}(\theta) = \cos[(n-1)\theta] = \cos[n\theta]\cos\theta + \sin[n\theta]\sin\theta$$

$$T_{n+1}(\theta) = \cos[(n+1)\theta] = \cos[n\theta]\cos\theta - \sin[n\theta]\sin\theta.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We can readily see that

$$T_0(x) = \cos[0 \arccos x] = 1$$

$$T_1(x) = \cos[\arccos x] = x.$$

• When $n \ge 1$ substitute $\theta = \arccos x$, then

$$T_n(\theta) = \cos[n\,\theta].$$

Using the sum and difference of angles formula for the cosine we see that

$$T_{n-1}(\theta) = \cos[(n-1)\theta] = \cos[n\theta]\cos\theta + \sin[n\theta]\sin\theta$$

$$T_{n+1}(\theta) = \cos[(n+1)\theta] = \cos[n\theta]\cos\theta - \sin[n\theta]\sin\theta.$$

If we add these expressions we can derive

$$T_{n-1}(\theta) + T_{n+1}(\theta) = 2\cos[n\theta]\cos\theta$$

$$T_{n+1}(\theta) = 2\cos[n\theta]\cos\theta - T_{n-1}(\theta),$$

a recurrence relation for Chebyshev polynomials.

$$T_{n+1}(\theta) = 2\cos[n\theta]\cos\theta - T_{n-1}(\theta)$$

= 2\cos[n\arccos x]\cos[\arccos x] - T_{n-1}(x)
$$T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$$T_{n+1}(\theta) = 2\cos[n\theta]\cos\theta - T_{n-1}(\theta)$$

= $2\cos[n\arccos x]\cos[\arccos x] - T_{n-1}(x)$
$$T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$$

Since we already know that $T_0(x) = 1$ and $T_1(x) = x$ we can use the recurrence relation to develop the remaining Chebyshev polynomials.

$$T_2(x) = 2x(x) - 1 = 2x^2 - 1$$

$$T_3(x) = 2x(2x^2 - 1) - x = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 16x^5 - 20x^3 + 5x$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

:

Graphs of Chebyshev Polynomials

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Orthogonality of Chebyshev Polynomials (1 of 4)

Suppose $n \neq m$ and consider the definite integral:

$$\int_{-1}^{1} \frac{T_n(x) T_m(x)}{\sqrt{1-x^2}} \, dx = \int_{-1}^{1} \frac{\cos[n \arccos x] \cos[m \arccos x]}{\sqrt{1-x^2}} \, dx.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Q: how can we integrate this?

Orthogonality of Chebyshev Polynomials (1 of 4)

Suppose $n \neq m$ and consider the definite integral:

$$\int_{-1}^{1} \frac{T_n(x) T_m(x)}{\sqrt{1-x^2}} \, dx = \int_{-1}^{1} \frac{\cos[n \arccos x] \cos[m \arccos x]}{\sqrt{1-x^2}} \, dx.$$

Q: how can we integrate this? Substitute $\theta = \arccos x$ and $d\theta = -(1 - x^2)^{-1/2}$.

$$\int_{-1}^{1} \frac{T_n(x) T_m(x)}{\sqrt{1-x^2}} dx = -\int_{\pi}^{0} \cos[n\theta] \cos[m\theta] d\theta$$
$$= \int_{0}^{\pi} \cos[n\theta] \cos[m\theta] d\theta$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Q: how can we integrate this?

Orthogonality of Chebyshev Polynomials (2 of 4)

Use the product-to-sum formula:

$$\cos[n\theta]\cos[m\theta] = \frac{1}{2}(\cos[(n+m)\theta] + \cos[(n-m)\theta])$$

and we have

$$\int_{-1}^{1} \frac{T_n(x) T_m(x)}{\sqrt{1-x^2}} dx = \int_{0}^{\pi} \cos[n\theta] \cos[m\theta] d\theta$$
$$= \frac{1}{2} \int_{0}^{\pi} (\cos[(n+m)\theta] + \cos[(n-m)\theta]) d\theta$$
$$= 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

if $n \neq m$.

Orthogonality of Chebyshev Polynomials (3 of 4)

Suppose n = m and consider the definite integral:

$$\int_{-1}^{1} \frac{T_n(x) T_n(x)}{\sqrt{1-x^2}} \, dx = \int_{-1}^{1} \frac{\cos^2[n \arccos x]}{\sqrt{1-x^2}} \, dx.$$

Substitute $\theta = \arccos x$ and $d\theta = -(1 - x^2)^{-1/2}$.

$$\int_{-1}^{1} \frac{T_n(x) T_n(x)}{\sqrt{1-x^2}} dx = -\int_{\pi}^{0} \cos^2[n\theta] d\theta$$
$$= \int_{0}^{\pi} \cos^2[n\theta] d\theta$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Q: how can we integrate this?

Orthogonality of Chebyshev Polynomials (4 of 4)

Use the half-angle formula:

$$\cos^2[n\theta] = \frac{1}{2}(1 + \cos[2n\theta])$$

then we have

$$\int_{-1}^{1} \frac{T_n(x) T_n(x)}{\sqrt{1-x^2}} dx = \int_0^{\pi} \cos^2[n\theta] d\theta$$
$$= \frac{1}{2} \int_0^{\pi} (1+\cos[2n\theta]) d\theta$$
$$= \frac{\pi}{2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

if *n* ≥ 1.

Roots of Chebyshev Polynomials

Theorem

The Chebyshev polynomial $T_n(x)$ for degree $n \ge 1$ has n simple roots in [-1, 1] located at

$$\overline{x}_k = \cos\left(\frac{2k-1}{2n}\pi\right)$$
 for $k = 1, 2, \ldots, n$.

Polynomial $T_n(x)$ assumes absolute extrema at

$$\overline{x}_k' = \cos\left(\frac{k\pi}{n}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with $T_n(\overline{x}'_k) = (-1)^k$ for k = 0, 1, ..., n.

Fix $n \ge 1$ then

$$\overline{x}_k = \cos\left(\frac{2k-1}{2n}\pi\right)$$

are distinct for $k = 1, 2, \ldots, n$.

$$T_n(\overline{x}_k) = \cos\left[n \arccos\left(\cos\left(\frac{2k-1}{2n}\pi\right)\right)\right] = \cos\left[\frac{(2k-1)\pi}{2}\right] = 0.$$

Since $T_n(x)$ is a polynomial of degree *n* then $\{\overline{x}_k\}_{k=1}^n$ is its complete set of distinct simple roots.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fix $n \ge 1$ then the derivative of $T_n(x)$ is

$$T'_n(x) = \frac{n \sin[n \arccos x]}{\sqrt{1-x^2}}.$$

Observe that

$$T_n(\overline{x}'_0) = T_n\left(\cos\frac{(0)\pi}{n}\right) = T_n(1) = \cos[n \arccos 1] = \cos[0] = 1$$

and

$$T_n(\overline{x}'_n) = T_n\left(\cos\frac{n\pi}{n}\right) = T_n(-1) = \cos[n\arccos(-1)] = (-1)^n$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Proof (3 of 4)

Fix $n \ge 1$ and let $k \in \{1, 2, \dots, n-1\}$, then

$$T'_{n}(\overline{x}'_{k}) = T'_{n}\left(\cos\left[\frac{k\pi}{n}\right]\right)$$
$$= \frac{n\sin[n\arccos\left(\cos\left[\frac{k\pi}{n}\right]\right)]}{\sqrt{1 - \left(\cos\left[\frac{k\pi}{n}\right]\right)^{2}}}$$
$$= \frac{n\sin[k\pi]}{\sin\left[\frac{k\pi}{n}\right]}$$
$$= 0.$$

Thus $T_n(x)$ has a critical point at each \overline{x}'_k .

Proof (4 of 4)

Evaluate $T_n(x)$ at each critical point.

$$T_n(\overline{x}'_k) = T_n\left(\cos\left[\frac{k\pi}{n}\right]\right)$$

= $\cos\left[n\arccos\left(\cos\left[\frac{k\pi}{n}\right]\right)\right]$
= $\cos[k\pi]$
= $(-1)^k$

Remark: thus a maximum occurs at each even value of *k* and a minimum at each odd value of *k*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Orthonormal Chebyshev Polynomials

- We can prove that the leading coefficient of *T_n(x)* is 2^{*n*−1} for *n* ≥ 1.
- ► The normalized Chebyshev polynomials are monic polynomials obtained by dividing $T_n(x)$ by 2^{n-1} .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Orthonormal Chebyshev Polynomials

- We can prove that the leading coefficient of *T_n(x)* is 2^{*n*−1} for *n* ≥ 1.
- ► The normalized Chebyshev polynomials are monic polynomials obtained by dividing $T_n(x)$ by 2^{n-1} .
- We will define

$$\begin{aligned} \tilde{T}_0(x) &= 1\\ \tilde{T}_n(x) &= \frac{1}{2^{n-1}}T_n(x) \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for *n* = 1, 2,

Orthonormal Chebyshev Polynomials

- We can prove that the leading coefficient of *T_n(x)* is 2^{*n*−1} for *n* ≥ 1.
- ► The normalized Chebyshev polynomials are monic polynomials obtained by dividing $T_n(x)$ by 2^{n-1} .
- We will define

$$\begin{aligned} \tilde{T}_0(x) &= 1\\ \tilde{T}_n(x) &= \frac{1}{2^{n-1}}T_n(x) \end{aligned}$$

for *n* = 1, 2,

• Denote by $\tilde{\Pi}_n$ the set of all monic polynomials of degree *n* or less.

Graphs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

A Property of the $\tilde{T}_n(x)$

Theorem

The polynomials of the form $\tilde{T}_n(x)$ with $n \ge 1$ have the property that

$$\frac{1}{2^{n-1}} = \max_{-1 \le x \le 1} \left| \tilde{T}_n(x) \right| \le \max_{-1 \le x \le 1} |P_n(x)|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for all $P_n(x) \in \tilde{\Pi}_n$. Furthermore, equality occurs only if $P_n \equiv \tilde{T}_n$.

A Property of the $\tilde{T}_n(x)$

Theorem

The polynomials of the form $\tilde{T}_n(x)$ with $n \ge 1$ have the property that

$$\frac{1}{2^{n-1}} = \max_{-1 \le x \le 1} \left| \tilde{T}_n(x) \right| \le \max_{-1 \le x \le 1} |P_n(x)|$$

(日) (日) (日) (日) (日) (日) (日)

for all $P_n(x) \in \tilde{\Pi}_n$. Furthermore, equality occurs only if $P_n \equiv \tilde{T}_n$. **Remark**: since $\max_{-1 \le x \le 1} |T_n(x)| = 1$ then $\max_{-1 \le x \le 1} |\tilde{T}_n(x)| = \frac{1}{2^{n-1}}$.

Suppose that $P_n(x) \in \tilde{\Pi}_n$ and

$$\max_{-1 \le x \le 1} |P_n(x)| \le \frac{1}{2^{n-1}}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ Define the function $Q(x) = \tilde{T}_n(x) - P_n(x)$. Q(x) is a polynomial of degree at most n - 1 (**why?**).

Suppose that $P_n(x) \in \tilde{\Pi}_n$ and

$$\max_{-1 \le x \le 1} |P_n(x)| \le \frac{1}{2^{n-1}}.$$

▶ Define the function $Q(x) = \tilde{T}_n(x) - P_n(x)$. Q(x) is a polynomial of degree at most n - 1 (**why?**).

• $\tilde{T}_n(x)$ has n + 1 extreme points \overline{x}'_k and

$$Q(\overline{x}'_k) = \widetilde{T}_n(\overline{x}'_k) - P_n(\overline{x}'_k) = \frac{(-1)^k}{2^{n-1}} - P_n(\overline{x}'_k).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$Q(\overline{x}'_k) = \widetilde{T}_n(\overline{x}'_k) - P_n(\overline{x}'_k) = \frac{(-1)^k}{2^{n-1}} - P_n(\overline{x}'_k).$$

- By assumption $|P_n(\overline{x}'_k)| \leq \frac{1}{2^{n-1}}$ for $k = 0, 1, \dots, n$.
- ▶ When *k* is even then $Q(\overline{x}'_k) \ge 0$ and when *k* is odd $Q(\overline{x}'_k) \le 0$.

$$Q(\overline{x}'_k) = \widetilde{T}_n(\overline{x}'_k) - P_n(\overline{x}'_k) = \frac{(-1)^k}{2^{n-1}} - P_n(\overline{x}'_k).$$

- By assumption $|P_n(\overline{x}'_k)| \leq \frac{1}{2^{n-1}}$ for $k = 0, 1, \dots, n$.
- ▶ When *k* is even then $Q(\overline{x}'_k) \ge 0$ and when *k* is odd $Q(\overline{x}'_k) \le 0$.
- Since Q(x) is a polynomial, Q is continuous on [−1, 1]. By the Intermediate Value Theorem there exists z_j ∈ [x_j', x_{j+1}] for j = 0, 1, ..., n − 1 such that Q(z_j) = 0.

(日) (日) (日) (日) (日) (日) (日)

$$Q(\overline{x}'_k) = \widetilde{T}_n(\overline{x}'_k) - P_n(\overline{x}'_k) = \frac{(-1)^k}{2^{n-1}} - P_n(\overline{x}'_k).$$

- By assumption $|P_n(\overline{x}'_k)| \leq \frac{1}{2^{n-1}}$ for $k = 0, 1, \dots, n$.
- ▶ When *k* is even then $Q(\overline{x}'_k) \ge 0$ and when *k* is odd $Q(\overline{x}'_k) \le 0$.
- Since Q(x) is a polynomial, Q is continuous on [−1, 1]. By the Intermediate Value Theorem there exists z_j ∈ [x'_j, x'_{j+1}] for j = 0, 1, ..., n − 1 such that Q(z_j) = 0.
- This implies Q has at least n distinct roots, but Q is a polynomial of degree at most n − 1. Thus Q(x) ≡ 0 and P_n(x) ≡ T̃_n(x).

Lagrange Interpolation Error (1 of 5)

Now we may begin to apply these properties of the Chebyshev polynomials to the task of minimizing the error in a Lagrange interpolating polynomials.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lagrange Interpolation Error (1 of 5)

Now we may begin to apply these properties of the Chebyshev polynomials to the task of minimizing the error in a Lagrange interpolating polynomials.

Recall an earlier theorem.

Theorem

Suppose $x_0, x_1, ..., x_n$ are distinct numbers in the interval [a, b] and suppose $f \in C^{n+1}[a, b]$. Then for each $x \in [a, b]$ there exists a number $z(x) \in (a, b)$ for which

$$f(x) = P(x) + \frac{f^{(n+1)}(z(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

(日) (日) (日) (日) (日) (日) (日)

where P(x) is the Lagrange Interpolating Polynomial.

Lagrange Interpolation Error (2 of 5)

If interval [a, b] = [-1, 1] then

$$f(x) - P(x) = \frac{f^{(n+1)}(z(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n),$$

where P(x) is a Lagrange interpolating polynomial and $z(x) \in (-1, 1)$.

Remark: we have no control over z(x) but we can attempt to make the interpolation error small by making

$$|(x-x_0)(x-x_1)\cdots(x-x_n)|$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

small on the interval [-1, 1].

Lagrange Interpolation Error (3 of 5)

Q: how do we make

$$|(x-x_0)(x-x_1)\cdots(x-x_n)|$$

small on the interval [-1, 1]?

Lagrange Interpolation Error (3 of 5)

Q: how do we make

$$|(x-x_0)(x-x_1)\cdots(x-x_n)|$$

small on the interval [-1, 1]?

A: since the expression inside the absolute value is a monic polynomial of degree n + 1, we should let

$$\begin{aligned} \tilde{\mathcal{T}}_{n+1}(x) &= & (x-x_0)(x-x_1)\cdots(x-x_n) \\ &= & \prod_{k=0}^n (x-\overline{x}_{k+1}) \\ &= & \prod_{k=0}^n \left(x-\cos\left[\frac{2k+1}{2(n+1)}\pi\right]\right) \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lagrange Interpolation Error (4 of 5)

Thus the Lagrange interpolation error is bounded by

$$\begin{aligned} |E| &\leq \max_{-1 \leq x \leq 1} \left| \frac{f^{(n+1)}(z(x))}{(n+1)!} (x-x_0)(x-x_1) \cdots (x-x_n) \right| \\ &\leq \max_{-1 \leq x \leq 1} \left| \frac{f^{(n+1)}(z(x))}{(n+1)!} \right| \max_{-1 \leq x \leq 1} \left| \tilde{T}_{n+1}(x) \right| \\ &\leq 2^{-n} \max_{-1 \leq x \leq 1} \left| \frac{f^{(n+1)}(z(x))}{(n+1)!} \right|. \end{aligned}$$

Lagrange Interpolation Error (5 of 5)

Thus we have the following corollary.

Corollary

Suppose that P(x) is the interpolating polynomial of degree at most n with nodes at the zeros of $T_{n+1}(x)$. Then

$$\max_{-1 \le x \le 1} |f(x) - P(x)| \le \frac{1}{2^n (n+1)!} \max_{-1 \le x \le 1} \left| f^{(n+1)}(x) \right|$$

for every $f \in C^{n+1}[-1, 1]$.

Remark: if we wish to interpolate over the arbitrary interval [a, b] then use the change of variables

$$t=\frac{b-a}{2}x+\frac{b+a}{2}.$$

(日) (日) (日) (日) (日) (日) (日)

Consider the function $f(x) = x \ln x$ on the interval [1,3]. Compare the values given by the Lagrange interpolating polynomial found using four equally spaced nodes to the Lagrange interpolating polynomial with nodes given by the roots of $T_4(x)$.

Example (2 of 4)

With equally spaced nodes at $x_0 = 1$, $x_1 = 5/3$, $x_2 = 7/3$, and $x_3 = 3$ we have the Lagrange interpolating polynomial

$$\begin{array}{rcl} P_3(x) &=& f(1)L_0(x) + f(5/3)L_1(x) + f(7/3)L_2(x) + f(3)L_3(x) \\ &=& -0.585346 + 0.0942651x + 0.536711x^2 - 0.04563x^3. \end{array}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example (2 of 4)

With equally spaced nodes at $x_0 = 1$, $x_1 = 5/3$, $x_2 = 7/3$, and $x_3 = 3$ we have the Lagrange interpolating polynomial

$$P_3(x) = f(1)L_0(x) + f(5/3)L_1(x) + f(7/3)L_2(x) + f(3)L_3(x)$$

= -0.585346 + 0.0942651x + 0.536711x² - 0.04563x³.

With nodes at the roots of $T_4(x)$, *i.e.*, $x_i = \cos(2i + 1)\pi/8$ for i = 0, 1, 2, 3 we have the Lagrange interpolating polynomial

$$Q_3(x) = f(x_0+2)L_0(x+2) + f(x_1+2)L_1(x+2) + f(x_2+2)L_2(x+2) + f(x_3+2)L_3(x+2) = -0.595225 + 0.10582x + 0.532437x^2 - 0.0451646x^3.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example (3 of 4)

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Example (4 of 4)

Computing the error bounds we have

$$|E_P| = \max_{\substack{1 \le x \le 3}} \left| \frac{f^{(4)}(z(x))}{4!} (x-1)(x-5/3)(x-7/3)(x-3) \right|$$

$$\leq \frac{0.197531}{24} \max_{\substack{1 \le x \le 3}} \left| \frac{2}{x^3} \right|$$

$$= 0.0164609$$

and

$$\begin{aligned} |E_Q| &= \max_{1 \le x \le 3} \left| \frac{f^{(4)}(z(x))}{4!} \prod_{k=0} \left(x - 2 - \cos\left[\frac{(2k+1)\pi}{8} \right] \right) \right| \\ &\le \frac{2}{24} \max_{1 \le x \le 3} \left| \prod_{k=0} \left(x - 2 - \cos\left[\frac{(2k+1)\pi}{8} \right] \right) \right| \\ &= \frac{0.125}{12} \\ &= 0.0104167. \end{aligned}$$

Reducing the Degree of Approximating Polynomials

Suppose we want to approximate a polynomial of degree *n*,

$$P_n(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n$$

by a polynomial of degree at most n - 1.

Objective: select $P_{n-1}(x) \in \prod_{n-1}$ so that

$$\max_{-1\leq x\leq 1}|P_n(x)-P_{n-1}(x)|$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is as small as possible.

Selection (1 of 2)

Recognize that

$$Q(x)=\frac{1}{a_n}\left(P_n(x)-P_{n-1}(x)\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

is a monic polynomial of degree *n*.

Selection (1 of 2)

Recognize that

$$Q(x)=\frac{1}{a_n}\left(P_n(x)-P_{n-1}(x)\right)$$

is a monic polynomial of degree n.

Thus the following inequality holds.

$$\frac{1}{2^{n-1}} \leq \max_{-1 \leq x \leq 1} |Q(x)| = \max_{-1 \leq x \leq 1} \left| \frac{1}{a_n} \left(P_n(x) - P_{n-1}(x) \right) \right|$$

Selection (1 of 2)

Recognize that

$$Q(x)=\frac{1}{a_n}\left(P_n(x)-P_{n-1}(x)\right)$$

is a monic polynomial of degree *n*.

Thus the following inequality holds.

$$\frac{1}{2^{n-1}} \le \max_{-1 \le x \le 1} |Q(x)| = \max_{-1 \le x \le 1} \left| \frac{1}{a_n} \left(P_n(x) - P_{n-1}(x) \right) \right|$$

Equality holds when

$$Q(x)=\frac{1}{a_n}\left(P_n(x)-P_{n-1}(x)\right)=\tilde{T}_n(x).$$

Selection (2 of 2)

Thus we should choose

$$\frac{1}{a_n} (P_n(x) - P_{n-1}(x)) = \tilde{T}_n(x) P_{n-1}(x) = P_n(x) - a_n \tilde{T}_n(x).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Selection (2 of 2)

Thus we should choose

$$\frac{1}{a_n} \left(P_n(x) - P_{n-1}(x) \right) = \tilde{T}_n(x)$$
$$P_{n-1}(x) = P_n(x) - a_n \tilde{T}_n(x).$$

The error bound is

$$\max_{-1 \le x \le 1} |P_n(x) - P_{n-1}(x)| = \max_{-1 \le x \le 1} \left| a_n \tilde{T}_n(x) \right| = \frac{|a_n|}{2^{n-1}}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example

The sixth Maclaurin polynomial for $f(x) = xe^x$ is

$$P(x) = x + x^2 + \frac{x^3}{2} + \frac{x^4}{6} + \frac{x^5}{24} + \frac{x^6}{120}.$$

A bound for the error in this approximation on [-1, 1] is E = 0.00161516.

Use Chebyshev economization to find a polynomial of lesser degree to approximate f(x) while keeping the error less than 0.01 for $-1 \le x \le 1$.

Solution (1 of 4)

The polynomial of degree 5 which best approximates P(x) on [-1, 1] is

$$P_5(x) = P(x) - \frac{1}{120}\tilde{T}_6(x)$$

= $\frac{x^5}{24} + \frac{43x^4}{240} + \frac{x^3}{2} + \frac{637x^2}{640} + x + \frac{1}{3840}.$

Solution (1 of 4)

The polynomial of degree 5 which best approximates P(x) on [-1, 1] is

$$\begin{array}{rcl} P_5(x) &=& P(x) - \frac{1}{120} \, \tilde{T}_6(x) \\ &=& \frac{x^5}{24} + \frac{43x^4}{240} + \frac{x^3}{2} + \frac{637x^2}{640} + x + \frac{1}{3840}. \end{array}$$

Note:
$$|P(x) - P_5(x)| = \left|\frac{1}{120}\tilde{T}_6(x)\right| \le \frac{1}{120(2^5)} \approx 0.000260417$$

Solution (1 of 4)

The polynomial of degree 5 which best approximates P(x) on [-1, 1] is

$$\begin{array}{rcl} P_5(x) & = & P(x) - \frac{1}{120} \, \tilde{T}_6(x) \\ & = & \frac{x^5}{24} + \frac{43x^4}{240} + \frac{x^3}{2} + \frac{637x^2}{640} + x + \frac{1}{3840}. \end{array}$$

Note:
$$|P(x) - P_5(x)| = \left|\frac{1}{120}\tilde{T}_6(x)\right| \le \frac{1}{120(2^5)} \approx 0.000260417$$

Adding this to the previous error bound gives a total error bound of

0.00161516 + 0.000260417 = 0.00187558 < 0.01.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Solution (2 of 4)

The polynomial of degree 4 which best approximates $P_5(x)$ on [-1, 1] is

$$P_4(x) = P_5(x) - \frac{1}{24}\tilde{T}_5(x)$$

= $\frac{1}{3840}(688x^4 + 2120x^3 + 3822x^2 + 3790x + 1).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Solution (2 of 4)

The polynomial of degree 4 which best approximates $P_5(x)$ on [-1, 1] is

$$P_4(x) = P_5(x) - \frac{1}{24}\tilde{T}_5(x)$$

= $\frac{1}{3840}(688x^4 + 2120x^3 + 3822x^2 + 3790x + 1).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Note:
$$|P_4(x) - P_5(x)| = \left|\frac{1}{24}\tilde{T}_5(x)\right| \le \frac{1}{24(2^4)} \approx 0.00260417$$

Solution (2 of 4)

The polynomial of degree 4 which best approximates $P_5(x)$ on [-1, 1] is

$$P_4(x) = P_5(x) - \frac{1}{24}\tilde{T}_5(x)$$

= $\frac{1}{3840}(688x^4 + 2120x^3 + 3822x^2 + 3790x + 1).$

Note:
$$|P_4(x) - P_5(x)| = \left|\frac{1}{24}\tilde{T}_5(x)\right| \le \frac{1}{24(2^4)} \approx 0.00260417$$

Adding this to the previous error bound gives a total error bound of

0.00161516 + 0.000260417 + 0.00260417 = 0.00447975 < 0.01.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Solution (3 of 4)

The polynomial of degree 3 which best approximates $P_4(x)$ on [-1, 1] is

$$P_3(x) = P_4(x) - \frac{688}{3840}\tilde{T}_4(x)$$

= $\frac{1}{768}(424x^3 + 902x^2 + 758x - 17).$

Solution (3 of 4)

The polynomial of degree 3 which best approximates $P_4(x)$ on [-1, 1] is

$$P_3(x) = P_4(x) - \frac{688}{3840}\tilde{T}_4(x)$$

= $\frac{1}{768}(424x^3 + 902x^2 + 758x - 17).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Note:
$$|P_3(x) - P_4(x)| = \left| \frac{688}{3840} \tilde{T}_4(x) \right| \le \frac{688}{3840(2^3)} \approx 0.0223958$$

Solution (3 of 4)

The polynomial of degree 3 which best approximates $P_4(x)$ on [-1, 1] is

$$P_3(x) = P_4(x) - \frac{688}{3840}\tilde{T}_4(x)$$

= $\frac{1}{768}(424x^3 + 902x^2 + 758x - 17).$

Note:
$$|P_3(x) - P_4(x)| = \left| \frac{688}{3840} \tilde{T}_4(x) \right| \le \frac{688}{3840(2^3)} \approx 0.0223958$$

Adding this to the previous error bound gives a total error bound of

0.0268756 > 0.01,

thus we may use $P_4(x)$ to approximate f(x) to within 0.01 on [-1, 1].

Example (4 of 4)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Homework

Read Section 8.3.

Exercises: 1ab, 3ab, 5ab, 7, 8