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Background

▶ The Chebyshev polynomials denoted Tn(x) for n = 0,1, . . . are
a set of orthogonal polynomials on the open interval (−1,1) with
respect to the weight function w(x) = (1 − x2)−1/2.

▶ Starting with T0(x) = 1 we could use the Gram-Schmidt
process to build the orthogonal set.

▶ We will follow an alternative procedure to describe all the
Chebyshev polynomials.

▶ The Chebyshev polynomials have important applications for
▶ optimal placement of nodes to minimize error in Lagrange

interpolation, and
▶ reducing the degree of an approximating polynomial with minimal

loss of accuracy.
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Definition of the Chebyshev Polynomials

Definition
For x ∈ [−1,1] define the nth Chebyshev polynomial as

Tn(x) = cos[n arccos x ].

Claim: Tn(x) is a polynomial in x of degree n for n = 0,1, . . ..
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Proof (1 of 2)
▶ We can readily see that

T0(x) = cos[0 arccos x ] = 1
T1(x) = cos[arccos x ] = x .

▶ When n ≥ 1 substitute θ = arccos x , then

Tn(θ) = cos[n θ].

▶ Using the sum and difference of angles formula for the cosine we
see that

Tn−1(θ) = cos[(n − 1)θ] = cos[n θ] cos θ + sin[n θ] sin θ

Tn+1(θ) = cos[(n + 1)θ] = cos[n θ] cos θ − sin[n θ] sin θ.

▶ If we add these expressions we can derive

Tn−1(θ) + Tn+1(θ) = 2 cos[n θ] cos θ

Tn+1(θ) = 2 cos[n θ] cos θ − Tn−1(θ),

a recurrence relation for Chebyshev polynomials.
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Proof (2 of 2)

Tn+1(θ) = 2 cos[n θ] cos θ − Tn−1(θ)

= 2 cos[n arccos x ] cos[arccos x ]− Tn−1(x)
Tn+1(x) = 2x Tn(x)− Tn−1(x)

Since we already know that T0(x) = 1 and T1(x) = x we can use the
recurrence relation to develop the remaining Chebyshev polynomials.

T2(x) = 2x(x)− 1 = 2x2 − 1
T3(x) = 2x(2x2 − 1)− x = 4x3 − 3x
T4(x) = 8x4 − 8x2 + 1
T5(x) = 16x5 − 20x3 + 5x

...
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Graphs of Chebyshev Polynomials
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Orthogonality of Chebyshev Polynomials (1 of 4)

Suppose n ̸= m and consider the definite integral:∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =

∫ 1

−1

cos[n arccos x ] cos[m arccos x ]√
1 − x2

dx .

Q: how can we integrate this?

Substitute θ = arccos x and dθ = −(1 − x2)−1/2.∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx = −
∫ 0

π

cos[nθ] cos[mθ]dθ

=

∫ π

0
cos[nθ] cos[mθ]dθ

Q: how can we integrate this?
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Orthogonality of Chebyshev Polynomials (2 of 4)

Use the product-to-sum formula:

cos[n θ] cos[m θ] =
1
2
(cos[(n + m)θ] + cos[(n − m)θ])

and we have∫ 1

−1

Tn(x)Tm(x)√
1 − x2

dx =

∫ π

0
cos[n θ] cos[m θ]dθ

=
1
2

∫ π

0
(cos[(n + m)θ] + cos[(n − m)θ])dθ

= 0

if n ̸= m.



Orthogonality of Chebyshev Polynomials (3 of 4)

Suppose n = m and consider the definite integral:∫ 1

−1

Tn(x)Tn(x)√
1 − x2

dx =

∫ 1

−1

cos2[n arccos x ]√
1 − x2

dx .

Substitute θ = arccos x and dθ = −(1 − x2)−1/2.∫ 1

−1

Tn(x)Tn(x)√
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π
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Orthogonality of Chebyshev Polynomials (4 of 4)

Use the half-angle formula:

cos2[n θ] =
1
2
(1 + cos[2n θ])

then we have∫ 1

−1

Tn(x)Tn(x)√
1 − x2

dx =

∫ π

0
cos2[n θ]dθ

=
1
2

∫ π

0
(1 + cos[2n θ])dθ

=
π

2

if n ≥ 1.



Roots of Chebyshev Polynomials

Theorem
The Chebyshev polynomial Tn(x) for degree n ≥ 1 has n simple roots
in [−1,1] located at

xk = cos

(
2k − 1

2n
π

)
for k = 1,2, . . . ,n.

Polynomial Tn(x) assumes absolute extrema at

x ′
k = cos

(
kπ
n

)
with Tn(x

′
k ) = (−1)k for k = 0,1, . . . ,n.



Proof (1 of 4)

Fix n ≥ 1 then

xk = cos

(
2k − 1

2n
π

)
are distinct for k = 1,2, . . . ,n.

Tn(xk ) = cos

[
n arccos

(
cos

(
2k − 1

2n
π

))]
= cos

[
(2k − 1)π

2

]
= 0.

Since Tn(x) is a polynomial of degree n then {xk}n
k=1 is its complete

set of distinct simple roots.



Proof (2 of 4)

Fix n ≥ 1 then the derivative of Tn(x) is

T ′
n(x) =

n sin[n arccos x ]√
1 − x2

.

Observe that

Tn(x
′
0) = Tn

(
cos

(0)π
n

)
= Tn(1) = cos[n arccos 1] = cos[0] = 1

and

Tn(x
′
n) = Tn

(
cos

nπ
n

)
= Tn(−1) = cos[n arccos(−1)] = (−1)n



Proof (3 of 4)

Fix n ≥ 1 and let k ∈ {1,2, . . . ,n − 1}, then

T ′
n(x

′
k ) = T ′

n

(
cos

[
kπ
n

])
=

n sin[n arccos
(
cos

[ kπ
n

])
]√

1 −
(
cos

[ kπ
n

])2

=
n sin[kπ]
sin

[ kπ
n

]
= 0.

Thus Tn(x) has a critical point at each x ′
k .



Proof (4 of 4)

Evaluate Tn(x) at each critical point.

Tn(x
′
k ) = Tn

(
cos

[
kπ
n

])
= cos

[
n arccos

(
cos

[
kπ
n

])]
= cos[kπ]
= (−1)k

Remark: thus a maximum occurs at each even value of k and a
minimum at each odd value of k .



Orthonormal Chebyshev Polynomials

▶ We can prove that the leading coefficient of Tn(x) is 2n−1 for
n ≥ 1.

▶ The normalized Chebyshev polynomials are monic polynomials
obtained by dividing Tn(x) by 2n−1.

▶ We will define

T̃0(x) = 1

T̃n(x) =
1

2n−1 Tn(x)

for n = 1,2, . . ..
▶ Denote by Π̃n the set of all monic polynomials of degree n or less.
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A Property of the T̃n(x)

Theorem
The polynomials of the form T̃n(x) with n ≥ 1 have the property that

1
2n−1 = max

−1≤x≤1

∣∣∣T̃n(x)
∣∣∣ ≤ max

−1≤x≤1
|Pn(x)|

for all Pn(x) ∈ Π̃n. Furthermore, equality occurs only if Pn ≡ T̃n.

Remark: since max
−1≤x≤1

|Tn(x)| = 1 then max
−1≤x≤1

∣∣∣T̃n(x)
∣∣∣ = 1

2n−1 .
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Proof (1 of 2)

▶ Suppose that Pn(x) ∈ Π̃n and

max
−1≤x≤1

|Pn(x)| ≤
1

2n−1 .

▶ Define the function Q(x) = T̃n(x)− Pn(x). Q(x) is a polynomial
of degree at most n − 1 (why?).

▶ T̃n(x) has n + 1 extreme points x ′
k and

Q(x ′
k ) = T̃n(x

′
k )− Pn(x

′
k ) =

(−1)k

2n−1 − Pn(x
′
k ).
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Proof (2 of 2)
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2n−1 for k = 0,1, . . . ,n.

▶ When k is even then Q(x ′
k ) ≥ 0 and when k is odd Q(x ′

k ) ≤ 0.

▶ Since Q(x) is a polynomial, Q is continuous on [−1,1]. By the
Intermediate Value Theorem there exists zj ∈ [x ′

j , x
′
j+1] for

j = 0,1, . . . ,n − 1 such that Q(zj) = 0.
▶ This implies Q has at least n distinct roots, but Q is a polynomial

of degree at most n − 1. Thus Q(x) ≡ 0 and Pn(x) ≡ T̃n(x).
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Lagrange Interpolation Error (1 of 5)

Now we may begin to apply these properties of the Chebyshev
polynomials to the task of minimizing the error in a Lagrange
interpolating polynomials.

Recall an earlier theorem.

Theorem
Suppose x0, x1, . . . , xn are distinct numbers in the interval [a,b] and
suppose f ∈ Cn+1[a,b]. Then for each x ∈ [a,b] there exists a number
z(x) ∈ (a,b) for which

f (x) = P(x) +
f (n+1)(z(x))
(n + 1)!

(x − x0)(x − x1) · · · (x − xn),

where P(x) is the Lagrange Interpolating Polynomial.
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Lagrange Interpolation Error (2 of 5)

If interval [a,b] = [−1,1] then

f (x)− P(x) =
f (n+1)(z(x))
(n + 1)!

(x − x0)(x − x1) · · · (x − xn),

where P(x) is a Lagrange interpolating polynomial and
z(x) ∈ (−1,1).

Remark: we have no control over z(x) but we can attempt to make
the interpolation error small by making

|(x − x0)(x − x1) · · · (x − xn)|

small on the interval [−1,1].



Lagrange Interpolation Error (3 of 5)

Q: how do we make

|(x − x0)(x − x1) · · · (x − xn)|

small on the interval [−1,1]?

A: since the expression inside the absolute value is a monic
polynomial of degree n + 1, we should let

T̃n+1(x) = (x − x0)(x − x1) · · · (x − xn)

=
n∏

k=0

(x − xk+1)

=
n∏

k=0

(
x − cos

[
2k + 1

2(n + 1)
π

])
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Lagrange Interpolation Error (4 of 5)

Thus the Lagrange interpolation error is bounded by

|E | ≤ max
−1≤x≤1

∣∣∣∣ f (n+1)(z(x))
(n + 1)!

(x − x0)(x − x1) · · · (x − xn)

∣∣∣∣
≤ max

−1≤x≤1

∣∣∣∣ f (n+1)(z(x))
(n + 1)!

∣∣∣∣ max
−1≤x≤1

∣∣∣T̃n+1(x)
∣∣∣

≤ 2−n max
−1≤x≤1

∣∣∣∣ f (n+1)(z(x))
(n + 1)!

∣∣∣∣ .



Lagrange Interpolation Error (5 of 5)

Thus we have the following corollary.

Corollary
Suppose that P(x) is the interpolating polynomial of degree at most n
with nodes at the zeros of Tn+1(x). Then

max
−1≤x≤1

|f (x)− P(x)| ≤ 1
2n(n + 1)!

max
−1≤x≤1

∣∣∣f (n+1)(x)
∣∣∣

for every f ∈ Cn+1[−1,1].

Remark: if we wish to interpolate over the arbitrary interval [a,b] then
use the change of variables

t =
b − a

2
x +

b + a
2

.



Example (1 of 4)

Consider the function f (x) = x ln x on the interval [1,3]. Compare the
values given by the Lagrange interpolating polynomial found using
four equally spaced nodes to the Lagrange interpolating polynomial
with nodes given by the roots of T4(x).



Example (2 of 4)

With equally spaced nodes at x0 = 1, x1 = 5/3, x2 = 7/3, and x3 = 3
we have the Lagrange interpolating polynomial

P3(x) = f (1)L0(x) + f (5/3)L1(x) + f (7/3)L2(x) + f (3)L3(x)
= −0.585346 + 0.0942651x + 0.536711x2 − 0.04563x3.

With nodes at the roots of T4(x), i.e., xi = cos(2i + 1)π/8 for
i = 0,1,2,3 we have the Lagrange interpolating polynomial

Q3(x) = f (x0 + 2)L0(x + 2) + f (x1 + 2)L1(x + 2)
+ f (x2 + 2)L2(x + 2) + f (x3 + 2)L3(x + 2)

= −0.595225 + 0.10582x + 0.532437x2 − 0.0451646x3.
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Example (4 of 4)
Computing the error bounds we have

|EP | = max
1≤x≤3

∣∣∣∣ f (4)(z(x))4!
(x − 1)(x − 5/3)(x − 7/3)(x − 3)

∣∣∣∣
≤ 0.197531

24
max

1≤x≤3

∣∣∣∣ 2
x3

∣∣∣∣
= 0.0164609

and

|EQ | = max
1≤x≤3

∣∣∣∣∣ f (4)(z(x))4!

∏
k=0

(
x − 2 − cos

[
(2k + 1)π

8

])∣∣∣∣∣
≤ 2

24
max

1≤x≤3

∣∣∣∣∣∏
k=0

(
x − 2 − cos

[
(2k + 1)π

8

])∣∣∣∣∣
=

0.125
12

= 0.0104167.



Reducing the Degree of Approximating Polynomials

Suppose we want to approximate a polynomial of degree n,

Pn(x) = a0 + a1x + · · ·+ an−1xn−1 + anxn

by a polynomial of degree at most n − 1.

Objective: select Pn−1(x) ∈ Πn−1 so that

max
−1≤x≤1

|Pn(x)− Pn−1(x)|

is as small as possible.



Selection (1 of 2)

▶ Recognize that

Q(x) =
1
an

(Pn(x)− Pn−1(x))

is a monic polynomial of degree n.

▶ Thus the following inequality holds.

1
2n−1 ≤ max

−1≤x≤1
|Q(x)| = max

−1≤x≤1

∣∣∣∣ 1
an

(Pn(x)− Pn−1(x))
∣∣∣∣

▶ Equality holds when

Q(x) =
1
an

(Pn(x)− Pn−1(x)) = T̃n(x).
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▶ Recognize that

Q(x) =
1
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(Pn(x)− Pn−1(x))

is a monic polynomial of degree n.
▶ Thus the following inequality holds.

1
2n−1 ≤ max

−1≤x≤1
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−1≤x≤1

∣∣∣∣ 1
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1
an

(Pn(x)− Pn−1(x)) = T̃n(x).



Selection (2 of 2)

▶ Thus we should choose

1
an

(Pn(x)− Pn−1(x)) = T̃n(x)

Pn−1(x) = Pn(x)− anT̃n(x).

▶ The error bound is

max
−1≤x≤1

|Pn(x)− Pn−1(x)| = max
−1≤x≤1

∣∣∣anT̃n(x)
∣∣∣ = |an|

2n−1 .



Selection (2 of 2)

▶ Thus we should choose

1
an

(Pn(x)− Pn−1(x)) = T̃n(x)

Pn−1(x) = Pn(x)− anT̃n(x).

▶ The error bound is

max
−1≤x≤1

|Pn(x)− Pn−1(x)| = max
−1≤x≤1

∣∣∣anT̃n(x)
∣∣∣ = |an|

2n−1 .



Example

The sixth Maclaurin polynomial for f (x) = xex is

P(x) = x + x2 +
x3

2
+

x4

6
+

x5

24
+

x6

120
.

A bound for the error in this approximation on [−1,1] is
E = 0.00161516.

Use Chebyshev economization to find a polynomial of lesser degree
to approximate f (x) while keeping the error less than 0.01 for
−1 ≤ x ≤ 1.



Solution (1 of 4)

The polynomial of degree 5 which best approximates P(x) on [−1,1]
is

P5(x) = P(x)− 1
120

T̃6(x)

=
x5

24
+

43x4

240
+

x3

2
+

637x2

640
+ x +

1
3840

.

Note: |P(x)− P5(x)| =
∣∣∣∣ 1
120

T̃6(x)
∣∣∣∣ ≤ 1

120(25)
≈ 0.000260417

Adding this to the previous error bound gives a total error bound of

0.00161516 + 0.000260417 = 0.00187558 < 0.01.
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Adding this to the previous error bound gives a total error bound of

0.00161516 + 0.000260417 = 0.00187558 < 0.01.



Solution (2 of 4)

The polynomial of degree 4 which best approximates P5(x) on [−1,1]
is

P4(x) = P5(x)−
1

24
T̃5(x)

=
1

3840
(688x4 + 2120x3 + 3822x2 + 3790x + 1).

Note: |P4(x)− P5(x)| =
∣∣∣∣ 1
24

T̃5(x)
∣∣∣∣ ≤ 1

24(24)
≈ 0.00260417

Adding this to the previous error bound gives a total error bound of

0.00161516 + 0.000260417 + 0.00260417 = 0.00447975 < 0.01.
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Solution (3 of 4)

The polynomial of degree 3 which best approximates P4(x) on [−1,1]
is

P3(x) = P4(x)−
688

3840
T̃4(x)

=
1

768
(424x3 + 902x2 + 758x − 17).

Note: |P3(x)− P4(x)| =
∣∣∣∣ 688
3840

T̃4(x)
∣∣∣∣ ≤ 688

3840(23)
≈ 0.0223958

Adding this to the previous error bound gives a total error bound of

0.0268756 > 0.01,

thus we may use P4(x) to approximate f (x) to within 0.01 on [−1,1].
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Example (4 of 4)
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Homework

▶ Read Section 8.3.
▶ Exercises: 1ab, 3ab, 5ab, 7, 8


