Algorithms and Convergence

MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

Algorithms and Pseudocode

Definition

An **algorithm** is a finite sequence of steps in a specified order for performing a calculation.

Algorithms and Pseudocode

Definition

An **algorithm** is a finite sequence of steps in a specified order for performing a calculation.

Definition

A **pseudocode** is a structured language for describing algorithms.

Mathematical calculation:
$$S = \sum_{i=1}^{N} x_i$$
.

Pseudocode:

Step 1 INPUT $N, x_1, x_2, ..., x_n$.

Step 2 Set SUM = 0.

Step 3 For i = 1, 2, ..., N set $SUM = SUM + x_i$.

Step 4 OUTPUT (*SUM*); STOP.

Stability

Definition

An algorithm which possesses the property that small changes in its inputs produce small changes in its outputs is said to be **stable**; otherwise it is **unstable**.

Notation:

- E₀ > 0 denotes the error introduced at some stage in a calculation.
- $ightharpoonup E_n$ denotes the error *n* operations later.

Growth of Error

Definition

Suppose E_n represents the magnitude of error after n subsequent operations.

- ▶ If $E_n = C \cdot n \cdot E_0$ where C is a constant independent of n, then the growth rate of the error is described as **linear**.
- ▶ If $E_n = C^n E_0$ where C > 1 is a constant, then the growth rate of the error is described as **exponential**.

Growth of Error

Definition

Suppose E_n represents the magnitude of error after n subsequent operations.

- ▶ If $E_n = C \cdot n \cdot E_0$ where C is a constant independent of n, then the growth rate of the error is described as **linear**.
- ▶ If $E_n = C^n E_0$ where C > 1 is a constant, then the growth rate of the error is described as **exponential**.

Remark: a linear growth of error is generally acceptable in an algorithm; however, exponential growth of error should be avoided.

Let c_1 and c_2 be real number constants and define the sequence $\{p_n\}_{n=0}^{\infty}$ as

$$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$$
 for $n = 0, 1, ...$

Let c_1 and c_2 be real number constants and define the sequence $\{p_n\}_{n=0}^{\infty}$ as

$$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$$
 for $n = 0, 1, ...$

1. Show that for n = 2, 3, ... the sequence elements satisfy the equation

$$p_n = \frac{10}{3}p_{n-1} - p_{n-2}.$$

Let c_1 and c_2 be real number constants and define the sequence $\{p_n\}_{n=0}^{\infty}$ as

$$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$$
 for $n = 0, 1, ...$

1. Show that for n = 2, 3, ... the sequence elements satisfy the equation

$$p_n = \frac{10}{3}p_{n-1} - p_{n-2}.$$

2. Suppose $p_0 = 1$ and $p_1 = 1/3$, find the constants c_1 and c_2 .

Let c_1 and c_2 be real number constants and define the sequence $\{p_n\}_{n=0}^{\infty}$ as

$$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$$
 for $n = 0, 1, ...$

1. Show that for n = 2, 3, ... the sequence elements satisfy the equation

$$p_n = \frac{10}{3}p_{n-1} - p_{n-2}.$$

- 2. Suppose $p_0 = 1$ and $p_1 = 1/3$, find the constants c_1 and c_2 .
- 3. Using the values found for c_1 and c_2 , find a simple formula for p_n .

Solution (1 of 2)

$$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$$

$$p_{n-1} = c_1 \left(\frac{1}{3}\right)^{n-1} + c_2 3^{n-1}$$

$$p_{n-2} = c_1 \left(\frac{1}{3}\right)^{n-2} + c_2 3^{n-2}$$

Solution (1 of 2)

$$p_{n-1} = c_1 \left(\frac{1}{3}\right)^{n-1} + c_2 3^{n-1}$$

$$p_{n-2} = c_1 \left(\frac{1}{3}\right)^{n-2} + c_2 3^{n-2}$$

$$\frac{10}{3} p_{n-1} - p_{n-2} = \frac{10}{3} \left(c_1 \left(\frac{1}{3}\right)^{n-1} + c_2 3^{n-1}\right) - c_1 \left(\frac{1}{3}\right)^{n-2} - c_2 3^{n-2}$$

$$= c_1 \left(10 \left(\frac{1}{3}\right)^n - \left(\frac{1}{3}\right)^{n-2}\right) + c_2 \left(10(3)^{n-2} - (3)^{n-2}\right)$$

$$= c_1 \left(\left(\frac{1}{3}\right)^n + 9 \left(\frac{1}{3}\right)^n - \left(\frac{1}{3}\right)^{n-2}\right) + c_2 \left(9(3)^{n-2}\right)$$

$$= c_1 \left(\left(\frac{1}{3}\right)^n + \left(\frac{1}{3}\right)^{n-2} - \left(\frac{1}{3}\right)^{n-2}\right) + c_2 3^n$$

$$= c_1 \left(\frac{1}{3}\right)^n + c_2 3^n = p_n$$

 $p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$

Solution (2 of 2)

Consider the simultaneous equations:

$$p_0 = c_1 \left(\frac{1}{3}\right)^0 + c_2(3)^0 = c_1 + c_2 = 1$$

$$p_1 = c_1 \left(\frac{1}{3}\right)^1 + c_2(3)^1 = \frac{1}{3}c_1 + 3c_2 = \frac{1}{3}$$

By inspection, the solutions are $c_1 = 1$ and $c_2 = 0$.

Solution (2 of 2)

Consider the simultaneous equations:

$$p_0 = c_1 \left(\frac{1}{3}\right)^0 + c_2(3)^0 = c_1 + c_2 = 1$$

$$p_1 = c_1 \left(\frac{1}{3}\right)^1 + c_2(3)^1 = \frac{1}{3}c_1 + 3c_2 = \frac{1}{3}$$

By inspection, the solutions are $c_1 = 1$ and $c_2 = 0$.

Using the values of c_1 and c_2 then a simple formula for p_n is

$$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n = \left(\frac{1}{3}\right)^n.$$

Example (1 of 2)

Suppose

$$\hat{p}_n = \hat{c}_1 \left(\frac{1}{3}\right)^n + \hat{c}_2 3^n$$

and we use 5-digit rounded approximations to $\hat{p}_0 = 1$ and $\hat{p}_1 = \frac{1}{3}$. Then we must solve the system of equations:

$$\begin{array}{rcl} \hat{c}_1 + \hat{c}_2 & = & 0.10000 \times 10^1 \\ \frac{1}{3} \hat{c}_1 + 3 \hat{c}_2 & = & 0.33333 \times 10^0 \end{array}$$

Using exact arithmetic to solve for \hat{c}_1 and \hat{c}_2 we find

$$\hat{c}_1 = 0.10000 \times 10^1 \text{ and } \hat{c}_2 = -0.12500 \times 10^{-5}.$$

Example (1 of 2)

Suppose

$$\hat{p}_n = \hat{c}_1 \left(\frac{1}{3}\right)^n + \hat{c}_2 3^n$$

and we use 5-digit rounded approximations to $\hat{p}_0 = 1$ and $\hat{p}_1 = \frac{1}{3}$. Then we must solve the system of equations:

$$\begin{array}{rcl} \hat{c}_1 + \hat{c}_2 & = & 0.10000 \times 10^1 \\ \frac{1}{3} \hat{c}_1 + 3 \hat{c}_2 & = & 0.33333 \times 10^0 \end{array}$$

Using exact arithmetic to solve for \hat{c}_1 and \hat{c}_2 we find

$$\hat{c}_1 = 0.10000 \times 10^1 \text{ and } \hat{c}_2 = -0.12500 \times 10^{-5}.$$

These values define the recursive sequence

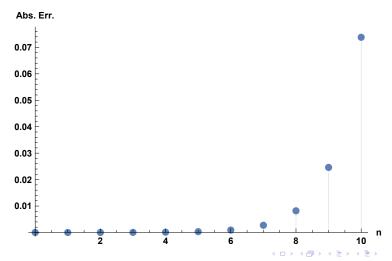
$$\hat{p}_n = (0.10000 \times 10^1) \left(\frac{1}{3}\right)^n - (0.12500 \times 10^{-5})3^n.$$

Example (2 of 2)

Consider the absolute error

$$|p_n - \hat{p}_n| = (0.12500 \times 10^{-5})3^n.$$

The error grows exponentially.



Let c_1 and c_2 be real number constants and define the sequence $\{p_n\}_{n=0}^{\infty}$ as

$$p_n = c_1 + c_2 n$$
 for $n = 0, 1, ...$

Let c_1 and c_2 be real number constants and define the sequence $\{p_n\}_{n=0}^{\infty}$ as

$$p_n = c_1 + c_2 n$$
 for $n = 0, 1, ...$

1. Show that for n = 2, 3, ... the sequence elements satisfy the equation

$$p_n = 2p_{n-1} - p_{n-2}$$
.

Let c_1 and c_2 be real number constants and define the sequence $\{p_n\}_{n=0}^{\infty}$ as

$$p_n = c_1 + c_2 n$$
 for $n = 0, 1, ...$

1. Show that for n = 2, 3, ... the sequence elements satisfy the equation

$$p_n = 2p_{n-1} - p_{n-2}$$
.

2. Suppose $p_0 = 1$ and $p_1 = 1/3$, find the constants c_1 and c_2 .

Let c_1 and c_2 be real number constants and define the sequence $\{p_n\}_{n=0}^{\infty}$ as

$$p_n = c_1 + c_2 n$$
 for $n = 0, 1, ...$

1. Show that for n = 2, 3, ... the sequence elements satisfy the equation

$$p_n = 2p_{n-1} - p_{n-2}$$
.

- 2. Suppose $p_0 = 1$ and $p_1 = 1/3$, find the constants c_1 and c_2 .
- 3. Using the values found for c_1 and c_2 , find a simple formula for p_n .

Solution (1 of 2)

$$p_n = c_1 + c_2 n$$

$$p_{n-1} = c_1 + c_2 (n-1)$$

$$p_{n-2} = c_1 + c_2 (n-2)$$

Solution (1 of 2)

$$p_n = c_1 + c_2 n$$

 $p_{n-1} = c_1 + c_2 (n-1)$
 $p_{n-2} = c_1 + c_2 (n-2)$

$$2p_{n-1} - p_{n-2} = 2(c_1 + c_2(n-1)) - c_1 - c_2(n-2)$$

$$= c_1(2-1) + c_2(2(n-1) - (n-2))$$

$$= c_1 + c_2n = p_n$$

Solution (2 of 2)

Consider the simultaneous equations:

$$\begin{array}{rcl} \rho_0 & = & c_1 = 1 \\ \\ \rho_1 & = & c_1 + c_2(1) = \frac{1}{3}. \end{array}$$

By inspection $c_1 = 1$ and $c_2 = -2/3$.

Solution (2 of 2)

Consider the simultaneous equations:

$$p_0 = c_1 = 1$$

 $p_1 = c_1 + c_2(1) = \frac{1}{3}$.

By inspection $c_1 = 1$ and $c_2 = -2/3$.

Using the values $c_1 = 1$ and $c_2 = -2/3$, a simple formula for p_n is

$$p_n=1-\frac{2}{3}n.$$

Example (1 of 2)

Suppose

$$\hat{p}_n = \hat{c}_1 + \hat{c}_2 n$$

with $\hat{p}_0=0.10000\times 10^1$ and $\hat{p}_1=0.33333\times 10^0$. If we use 5-digit rounding arithmetic to solve for \hat{c}_1 and \hat{c}_2 we find

$$\hat{c}_1 = 0.10000 \times 10^1$$
 and $\hat{c}_2 = -0.66667 \times 10^0$.

Example (1 of 2)

Suppose

$$\hat{p}_n = \hat{c}_1 + \hat{c}_2 n$$

with $\hat{p}_0=0.10000\times 10^1$ and $\hat{p}_1=0.33333\times 10^0$. If we use 5-digit rounding arithmetic to solve for \hat{c}_1 and \hat{c}_2 we find

$$\hat{c}_1 = 0.10000 \times 10^1$$
 and $\hat{c}_2 = -0.66667 \times 10^0$.

These values define the recursive sequence

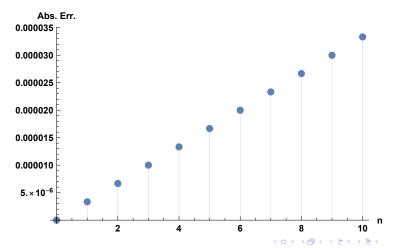
$$\hat{p}_n = 0.10000 \times 10^1 - (0.66667 \times 10^0) n.$$

Example (2 of 2)

Consider the absolute error

$$|p_n - \hat{p}_n| = \left(0.66667 - \frac{2}{3}\right)n.$$

The error grows linearly.



Rate of Convergence

Definition

Suppose $\{\beta_n\}_{n=0}^{\infty}$ is a sequence which converges to 0 and $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence which converges to α . If there exists K>0 such that

$$|\alpha_n - \alpha| \le K|\beta_n|$$

for large n, then $\{\alpha_n\}_{n=0}^{\infty}$ converges to α with **rate of convergence** $O(\beta_n)$ (read as "big oh of β_n ").

We will denote this as $\alpha_n = \alpha + O(\beta_n)$.

Rate of Convergence

Definition

Suppose $\{\beta_n\}_{n=0}^{\infty}$ is a sequence which converges to 0 and $\{\alpha_n\}_{n=0}^{\infty}$ is a sequence which converges to α . If there exists K > 0 such that

$$|\alpha_n - \alpha| \le K|\beta_n|$$

for large n, then $\{\alpha_n\}_{n=0}^{\infty}$ converges to α with rate of convergence $O(\beta_n)$ (read as "big oh of β_n ").

We will denote this as $\alpha_n = \alpha + O(\beta_n)$. **Remark:** We will frequently take $\beta_n = \frac{1}{p^p}$ where p > 0.

Find the rate of convergence of the sequence whose terms are defined as

$$\alpha_n=\frac{2n^2+n+1}{n^2+1}.$$

▶ We can see that $\alpha_n \to 2$ as $n \to \infty$.

- ▶ We can see that $\alpha_n \to 2$ as $n \to \infty$.
- ▶ Consider α_n 2,

$$\frac{2n^2+n+1}{n^2+1}-2=\frac{2n^2+n+1}{n^2+1}-\frac{2n^2+2}{n^2+1}=\frac{n-1}{n^2+1}.$$

- ▶ We can see that $\alpha_n \to 2$ as $n \to \infty$.
- ▶ Consider α_n 2,

$$\frac{2n^2+n+1}{n^2+1}-2=\frac{2n^2+n+1}{n^2+1}-\frac{2n^2+2}{n^2+1}=\frac{n-1}{n^2+1}.$$

▶ Establish a bound for $|\alpha_n - 2|$:

$$|\alpha_n - 2| = \left| \frac{n-1}{n^2 + 1} \right| \le \left| \frac{n-1}{n^2} \right| \le \left| \frac{n}{n^2} \right| = \left| \frac{1}{n} \right|$$

- ▶ We can see that $\alpha_n \to 2$ as $n \to \infty$.
- ▶ Consider α_n 2,

$$\frac{2n^2+n+1}{n^2+1}-2=\frac{2n^2+n+1}{n^2+1}-\frac{2n^2+2}{n^2+1}=\frac{n-1}{n^2+1}.$$

▶ Establish a bound for $|\alpha_n - 2|$:

$$|\alpha_n - 2| = \left| \frac{n-1}{n^2+1} \right| \le \left| \frac{n-1}{n^2} \right| \le \left| \frac{n}{n^2} \right| = \left| \frac{1}{n} \right|$$

Let $\beta_n = 1/n$ (since $\beta_n \to 0$ as $n \to \infty$) and K = 1, then

$$|\alpha_n - 2| \le K|\beta_n|$$

and the rate of convergence of $\{\alpha_n\}_{n=0}^{\infty}$ is O(1/n).

Rate of Convergence for Functions

Definition

Suppose $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If there exists a constant K>0 such that

$$|F(h)-L|\leq K|G(h)|$$

for sufficiently small h, then we may state F(h) = L + O(G(h)).

Rate of Convergence for Functions

Definition

Suppose $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$. If there exists a constant K > 0 such that

$$|F(h)-L|\leq K|G(h)|$$

for sufficiently small h, then we may state F(h) = L + O(G(h)).

Remark: We will frequently use function G(h) of the form $G(h) = h^p$ where p > 0.

Show that
$$\sin x + \frac{x^3}{3!} = x + O(x^5)$$
. (*Hint*: use Taylor's Theorem.)

Show that $\sin x + \frac{x^3}{3!} = x + O(x^5)$. (*Hint*: use Taylor's Theorem.) Using Taylor's Theorem

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \cos z(x)$$

$$\sin x + \frac{x^3}{3!} - x = \frac{x^5}{5!} \cos z(x)$$

$$\left| \sin x + \frac{x^3}{3!} - x \right| = \left| \frac{x^5}{5!} \right| \left| \cos z(x) \right|$$

$$\left| \left(\sin x + \frac{x^3}{3!} \right) - x \right| \le \frac{1}{120} |x^5|.$$

Homework

- Read Section 1.3.
- ► Exercises: 3, 6, 7, 8, 11