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History

Given nodes and data {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))} we have
interpolated using:
▶ Lagrange (or Hermite) interpolating polynomials of degree n (or

2n + 1), with n + 1 (or 2n + 2) coefficients,

unfortunately,

▶ such polynomials can possess large oscillations, and
▶ the error term can be difficult to construct and estimate.

An alternative is piecewise polynomial approximation, but of what
degree polynomial?

▶ Piecewise linear results are not differentiable at xi , i = 0,1, . . . ,n.
▶ Piecewise quadratic results are not twice differentiable at xi ,

i = 0,1, . . . ,n.
▶ Piecewise cubic!
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Cubic Splines

▶ A cubic polynomial p(x) = a + bx + cx2 + dx3 is specified by 4
coefficients.

▶ The cubic spline is twice continuously differentiable.
▶ The cubic spline has the flexibility to satisfy general types of

boundary conditions.
▶ While the spline may agree with f (x) at the nodes, we cannot

guarantee the derivatives of the spline agree with the derivatives
of f .



Cubic Spline Interpolant (1 of 2)

Given a function f (x) defined on [a,b] and a set of nodes

a = x0 < x1 < x2 < · · · < xn = b,

a cubic spline interpolant, S(x), for f (x) is a piecewise cubic
polynomial with components Sj(x) defined on [xj , xj+1] for
j = 0,1, . . . ,n − 1.

S(x) =



a0 + b0(x − x0) + c0(x − x0)
2 + d0(x − x0)

3 if x0 ≤ x ≤ x1
a1 + b1(x − x1) + c1(x − x1)

2 + d1(x − x1)
3 if x1 ≤ x ≤ x2

...
...

ai + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3 if xi ≤ x ≤ xi+1
...

...
an−1 + bn−1(x − xn−1) + cn−1(x − xn−1)

2 + dn−1(x − xn−1)
3 if xn−1 ≤ x ≤ xn



Cubic Spline Interpolant (2 of 2)

The cubic spline interpolant will have the following properties.
▶ S(xj) = f (xj) for j = 0,1, . . . ,n.
▶ Sj(xj+1) = Sj+1(xj+1) for j = 0,1, . . . ,n − 2.
▶ S′

j (xj+1) = S′
j+1(xj+1) for j = 0,1, . . . ,n − 2.

▶ S′′
j (xj+1) = S′′

j+1(xj+1) for j = 0,1, . . . ,n − 2.
▶ One of the following boundary conditions (BCs) is satisfied:

▶ S′′(x0) = S′′(xn) = 0 (free or natural BCs).
▶ S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped BCs).



Example (1 of 7)
Construct a piecewise cubic spline interpolant for the curve passing
through

{(5,5), (7,2), (9,4)},
with natural boundary conditions.

4 5 6 7 8 9 10
x0
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4
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6
y



Example (2 of 7)

This will require two cubics:

S0(x) = a0 + b0(x − 5) + c0(x − 5)2 + d0(x − 5)3

S1(x) = a1 + b1(x − 7) + c1(x − 7)2 + d1(x − 7)3

Since there are 8 coefficients, we must derive 8 equations to solve.

The splines must agree with the function (the y -coordinates) at the
nodes (the x-coordinates).

5 = S0(5) = a0

2 = S0(7) = a0 + 2b0 + 4c0 + 8d0

2 = S1(7) = a1

4 = S1(9) = a1 + 2b1 + 4c1 + 8d1
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Example (3 of 7)

The first and second derivatives of the cubics must agree at their
shared node x = 7.

S′
0(7) = b0 + 4c0 + 12d0 = b1 = S′

1(7)
S′′

0 (7) = 2c0 + 12d0 = 2c1 = S′′
1 (7)

The final two equations come from the natural boundary conditions.

S′′
0 (5) = 0 = 2c0

S′′
1 (9) = 0 = 2c1 + 12d1
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Example (4 of 7)

All eight linear equations together form the system:

5 = a0

2 = a0 + 2b0 + 4c0 + 8d0

2 = a1

4 = a1 + 2b1 + 4c1 + 8d1

0 = b0 + 4c0 + 12d0 − b1

0 = 2c0 + 12d0 − 2c1

0 = 2c0

0 = 2c1 + 12d1



Example (5 of 7)

The solution is:

i ai bi ci di

0 5 −17
8

0
5
32

1 2 −1
4

15
16

− 5
32



Example (6 of 7)
The natural cubic spline can be expressed as:

S(x) =


5 − 17

8
(x − 5) +

5
32

(x − 5)3 if 5 ≤ x ≤ 7

2 − 1
4
(x − 7) +

15
16

(x − 7)2 − 5
32

(x − 7)3 if 7 ≤ x ≤ 9
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Example (7 of 7)

We can verify the continuity of the first and second derivatives from
the following graphs.

6 7 8 9
x

-2

-1

1

S'(x)

6 7 8 9
x

0.5

1.0

1.5

S''(x)



General Construction Process

Given n + 1 nodal/data values: {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}
we will create n cubic polynomials.

For j = 0,1, . . . ,n − 1 assume

Sj(x) = aj + bj(x − xj) + cj(x − xj)
2 + dj(x − xj)

3.

We must find aj , bj , cj and dj (a total of 4n unknowns) subject to the
conditions specified in the definition.
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First Set of Equations

Let hj = xj+1 − xj then

Sj(xj) = aj = f (xj)

Sj+1(xj+1) = aj+1 = Sj(xj+1) = aj + bjhj + cjh2
j + djh3

j .

So far we know aj for j = 0,1, . . . ,n − 1 and have n equations and 3n
unknowns.

a1 = a0 + b0h0 + c0h2
0 + d0h3

0

...

aj+1 = aj + bjhj + cjh2
j + djh3

j

...

an = an−1 + bn−1hn−1 + cn−1h2
n−1 + dn−1h3

n−1



First Derivative

The continuity of the first derivative at the nodal points produces n
more equations.

For j = 0,1, . . . ,n − 1 we have

S′
j (x) = bj + 2cj(x − xj) + 3dj(x − xj)

2.

Thus

S′
j (xj) = bj

S′
j+1(xj+1) = bj+1 = S′

j (xj+1) = bj + 2cjhj + 3djh2
j

Now we have 2n equations and 3n unknowns.



Equations Derived So Far

a1 = a0 + b0h0 + c0h2
0 + d0h3

0

...

aj+1 = aj + bjhj + cjh2
j + djh3

j

...

an = an−1 + bn−1hn−1 + cn−1h2
n−1 + dn−1h3

n−1

b1 = b0 + 2c0h0 + 3d0h2
0

...

bj+1 = bj + 2cjhj + 3djh2
j

...

bn = bn−1 + 2cn−1hn−1 + 3dn−1h2
n−1

The unknowns are bj , cj , and dj for j = 0,1, . . . ,n − 1.



Second Derivative

The continuity of the second derivative at the nodal points produces n
more equations.

For j = 0,1, . . . ,n − 1 we have

S′′
j (x) = 2cj + 6dj(x − xj).

Thus

S′′
j (xj) = 2cj

S′′
j+1(xj+1) = 2cj+1 = S′′

j (xj+1) = 2cj + 6djhj

Now we have 3n equations and 3n unknowns.



Equations Derived So Far

aj+1 = aj + bjhj + cjh2
j + djh3

j (for j = 0,1, . . . ,n − 1)

bj+1 = bj + 2cjhj + 3djh2
j (for j = 0,1, . . . ,n − 1)

2c1 = 2c0 + 6d0h0

...
2cj+1 = 2cj + 6djhj

...
2cn = 2cn−1 + 6dn−1hn−1

The unknowns are bj , cj , and dj for j = 0,1, . . . ,n − 1.



Summary of Equations

For j = 0,1, . . . ,n − 1 we have

aj+1 = aj + bjhj + cjh2
j + djh3

j

bj+1 = bj + 2cjhj + 3djh2
j

cj+1 = cj + 3djhj .

Note: The quantities aj and hj are known.

Solve the third equation for dj and substitute into the other two
equations.

dj =
cj+1 − cj

3hj

This eliminates n equations of the third type.
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Solving the Equations (1 of 3)

aj+1 = aj + bjhj + cjh2
j + djh3

j

= aj + bjhj + cjh2
j +

(
cj+1 − cj

3hj

)
h3

j

= aj + bjhj +
h2

j

3
(2cj + cj+1)

bj+1 = bj + 2cjhj + 3djh2
j

= bj + 2cjhj + 3
(

cj+1 − cj

3hj

)
h2

j

= bj + hj(cj + cj+1)

Solve the first equation for bj .

bj =
1
hj
(aj+1 − aj)−

hj

3
(2cj + cj+1)
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Solving the Equations (2 of 3)

We have for j = 0,1, . . . ,n − 1,

bj =
1
hj
(aj+1 − aj)−

hj

3
(2cj + cj+1).

Replace index j by j − 1 to obtain

bj−1 =
1

hj−1
(aj − aj−1)−

hj−1

3
(2cj−1 + cj).

for j = 1,2, . . . ,n.

We can also re-index the earlier equation

bj+1 = bj + hj(cj + cj+1)

to obtain
bj = bj−1 + hj−1(cj−1 + cj).
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Solving the Equations (3 of 3)

bj = bj−1 + hj−1(cj−1 + cj).

Substitute the equations for bj−1 and bj into the equation above. This
step eliminates n equations of the first type.

1
hj
(aj+1 − aj)−

hj

3
(2cj + cj+1)

=
1

hj−1
(aj − aj−1)−

hj−1

3
(2cj−1 + cj) + hj−1(cj−1 + cj)

Collect all terms involving ck to one side.

hj−1cj−1 + 2cj(hj−1 + hj) + hjcj+1 =
3
hj
(aj+1 − aj)−

3
hj−1

(aj − aj−1)

for j = 1,2, . . . ,n − 1.

Remark: we have n − 1 equations and n + 1 unknowns.
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Natural Boundary Conditions

If S′′(x0) = S′′
0 (x0) = 2c0 = 0 then c0 = 0 and if

S′′(xn) = S′′
n−1(xn) = 2cn = 0 then cn = 0.

Theorem
If f is defined at a = x0 < x1 < · · · < xn = b then f has a unique
natural cubic spline interpolant.
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Natural BC Linear System (1 of 3)

In matrix form the system of n + 1 equations has the form A c = y
where

A =



1 0 0 0 · · · 0
h0 2(h0 + h1) h1 0 · · · 0
0 h1 2(h1 + h2) h2 · · · 0
...

...
...

...
...

0 0 0 hn−2 2(hn−2 + hn−1) hn−1
0 0 0 0 · · · 1


Note: A is a tridiagonal matrix.



Natural BC Linear System (2 of 3)

The vector y on the right-hand side is formed as

y =



0
3
h1
(a2 − a1)− 3

h0
(a1 − a0)

3
h2
(a3 − a2)− 3

h1
(a2 − a1)

...
3

hn−2
(an−1 − an−2)− 3

hn−3
(an−2 − an−3)

3
hn−1

(an − an−1)− 3
hn−2

(an−1 − an−2)

0


Note: A is a tridiagonal matrix.



Natural BC Linear System (3 of 3)

A



c0
c1
c2
...

cn−1
cn


=



0
3
h1
(a2 − a1)− 3

h0
(a1 − a0)

3
h2
(a3 − a2)− 3

h1
(a2 − a1)

...
3

hn−1
(an − an−1)− 3

hn−2
(an−1 − an−2)

0


We solve this linear system of equations using a common algorithm
for handling tridiagonal systems.



Natural Cubic Spline Algorithm

INPUT {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}
STEP 1 For i = 0,1, . . . ,n − 1 set ai = f (xi); set hi = xi+1 − xi .
STEP 2 For i = 1,2, . . . ,n − 1 set

αi =
3
hi
(ai+1 − ai)−

3
hi−1

(ai − ai−1).

STEP 3 Set l0 = 1; set µ0 = 0; set z0 = 0.
STEP 4 For i = 1,2, . . . ,n − 1 set li = 2(xi+1 − xi−1)− hi−1µi−1;

set µi =
hi

li
; set zi =

αi − hi−1zi−1

li
.

STEP 5 Set ln = 1; set cn = 0; set zn = 0.
STEP 6 For j = n − 1,n − 2, . . . ,0 set cj = zj − µjcj+1; set

bj =
aj+1 − aj

hj
−

hj(cj+1 + 2cj)

3
; set dj =

cj+1 − cj

3hj
.

STEP 7 For j = 0,1, . . . ,n − 1 OUTPUT aj , bj , cj , dj .



Example (1 of 4)

Construct the natural cubic spline interpolant for f (x) = ln(ex + 2)
with nodal values:

x f (x)
−1.0 0.86199480
−0.5 0.95802009
0.0 1.0986123
0.5 1.2943767

Calculate the absolute error in using the interpolant to approximate
f (0.25) and f ′(0.25).



Example (2 of 4)

In this case n = 3 and

h0 = h1 = h2 = 0.5

with

a0 = 0.86199480, a1 = 0.95802009,
a2 = 1.0986123, a3 = 1.2943767.

The linear system resembles,

A c =


1.0 0.0 0.0 0.0
0.5 2.0 0.5 0.0
0.0 0.5 2.0 0.5
0.0 0.0 0.0 1.0




c0
c1
c2
c3

 =


0.0

0.267402
0.331034

0.0

 = y



Example (3 of 4)

The coefficients of the piecewise cubics:

i ai bi ci di

0 0.861995 0.175638 0.0 0.0656509
1 0.95802 0.224876 0.0984763 0.028281
2 1.09861 0.344563 0.140898 −0.093918

The cubic spline:

S(x) =



0.861995 + 0.175638(x + 1) if −1 ≤ x ≤ −0.5
+ 0.0656509(x + 1)3

0.95802 + 0.224876(x + 0.5)
+ 0.0984763(x + 0.5)2 if −0.5 ≤ x ≤ 0
+ 0.028281(x + 0.5)3

1.09861 + 0.344563x if 0 ≤ x ≤ 0.5
+ 0.140898x2 − 0.093918x3
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Example (4 of 4)

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4
x

0.9

1.0

1.1

1.2

1.3

y

f (0.25) S(0.25) Abs. Err. f ′(0.25) S′(0.25) Abs. Err.
1.18907 1.19209 3.02154 × 10−3 0.390991 0.3974 6.40839 × 10−3



Clamped Boundary Conditions (1 of 2)

If S′(a) = S′
0(a) = f ′(a) = b0 then

f ′(a) =
1
h0

(a1 − a0)−
h0

3
(2c0 + c1)

which is equivalent to

h0(2c0 + c1) =
3
h0

(a1 − a0)− 3f ′(a).

This replaces the first equation in our system of n equations.



Clamped Boundary Conditions (2 of 2)

Likewise if S′(b) = S′
n(b) = f ′(b) = bn then

bn = bn−1 + hn−1(cn−1 + cn)

=
1

hn−1
(an − an−1)−

hn−1

3
(2cn−1 + cn) + hn−1(cn−1 + cn)

=
1

hn−1
(an − an−1) +

hn−1

3
(cn−1 + 2cn)

which is equivalent to

hn−1(cn−1 + 2cn) = 3f ′(b)− 3
hn−1

(an − an−1).

This replaces the last equation in our system of n equations.



Clamped BC Linear System (1 of 2)

Theorem
If f is defined at a = x0 < x1 < · · · < xn = b and differentiable at x = a
and at x = b, then f has a unique clamped cubic spline interpolant.
In matrix form the system of n equations has the form A c = y where

A =



2h0 h0 0 0 · · · 0
h0 2(h0 + h1) h1 0 · · · 0
0 h1 2(h1 + h2) h2 · · · 0
...

...
...

...
...

0 0 0 hn−2 2(hn−2 + hn−1) hn−1
0 0 0 · · · hn−1 2hn−1


Note: A is a tridiagonal matrix.



Clamped BC Linear System (2 of 2)

A



c0
c1
c2
...

cn−2
cn−1
cn


=



3
h0
(a1 − a0)− 3f ′(a)

3
h1
(a2 − a1)− 3

h0
(a1 − a0)

3
h2
(a3 − a2)− 3

h1
(a2 − a1)

...
3

hn−2
(an−1 − an−2)− 3

hn−3
(an−2 − an−3)

3
hn−1

(an − an−1)− 3
hn−2

(an−1 − an−2)

3f ′(b)− 3
hn−1

(an − an−1)





Coefficients of the Cubic Splines

Since aj for j = 0,1, . . . ,n is known, once we solve the linear system
for cj (again for j = 0,1, . . . ,n) then

bj =
1
hj
(aj+1 − aj)−

hj

3
(cj+1 + 2cj)

dj =
1

3hj
(cj+1 − cj)

for j = 0,1, . . . ,n − 1.



Clamped Cubic Spline Algorithm (1 of 2)

INPUT {(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}, f ′(x0), and
f ′(xn).

STEP 1 For i = 0,1, . . . ,n − 1 set ai = f (xi); set hi = xi+1 − xi .

STEP 2 Set α0 =
3(a1 − a0)

h0
− 3f ′(x0);

αn = 3f ′(xn)−
3(an − an−1)

hn−1
.

STEP 3 For i = 1,2, . . . ,n − 1 set

αi =
3
hi
(ai+1 − ai)−

3
hi−1

(ai − ai−1).

STEP 4 Set l0 = 2h0; µ0 = 0.5; z0 =
α0

l0
.



Clamped Cubic Spline Algorithm (2 of 2)

STEP 5 For i = 1,2, . . . ,n − 1 set li = 2(xi+1 − xi−1)− hi−1µi−1;

µi =
hi

li
; zi =

αi − hi−1zi−1

li
.

STEP 6 Set ln = hn−1(2 − µn−1); zn =
αn − hn−1zn−1

ln
; cn = zn.

STEP 7 For j = n − 1,n − 2, . . . ,0 set cj = zj − µjcj+1;

bj =
aj+1 − aj

hj
−

hj(cj+1 + 2cj)

3
; dj =

cj+1 − cj

3hj
.

STEP 8 For j = 0,1, . . . ,n − 1 OUTPUT aj , bj , cj , dj .



Example (1 of 4)

Construct the clamped cubic spline interpolant for f (x) = ln(ex + 2)
with nodal values:

x f (x)
−1.0 0.86199480
−0.5 0.95802009
0.0 1.0986123
0.5 1.2943767

Calculate the absolute error in using the interpolant to approximate
f (0.25) and f ′(0.25).



Example (2 of 4)

In this case n = 3 and

h0 = h1 = h2 = 0.5

with

a0 = 0.86199480, a1 = 0.95802009,
a2 = 1.0986123, a3 = 1.2943767.

Note that f ′(−1) ≈ 0.155362 and f ′(0.5) ≈ 0.451863.

The linear system resembles,

A c =


1.0 0.5 0.0 0.0
0.5 2.0 0.5 0.0
0.0 0.5 2.0 0.5
0.0 0.0 0.5 1.0




c0
c1
c2
c3

 =


0.110064
0.267402
0.331034
0.181001

 = y.



Example (3 of 4)

The coefficients of the piecewise cubics:

i ai bi ci di

0 0.861995 0.155362 0.0653748 0.0160031
1 0.95802 0.23274 0.0893795 0.0150207
2 1.09861 0.333384 0.11191 0.00875717

The cubic spline:

S(x) =



0.861995 + 0.155362(x + 1)
+ 0.0653748(x + 1)2 if −1 ≤ x ≤ −0.5
+ 0.0160031(x + 1)3

0.95802 + 0.23274(x + 0.5)
+ 0.0893795(x + 0.5)2 if −0.5 ≤ x ≤ 0
+ 0.0150207(x + 0.5)3

1.09861 + 0.333384x + 0.11191x2 if 0 ≤ x ≤ 0.5
+ 0.00875717x3



Example (3 of 4)

The coefficients of the piecewise cubics:

i ai bi ci di

0 0.861995 0.155362 0.0653748 0.0160031
1 0.95802 0.23274 0.0893795 0.0150207
2 1.09861 0.333384 0.11191 0.00875717

The cubic spline:

S(x) =



0.861995 + 0.155362(x + 1)
+ 0.0653748(x + 1)2 if −1 ≤ x ≤ −0.5
+ 0.0160031(x + 1)3

0.95802 + 0.23274(x + 0.5)
+ 0.0893795(x + 0.5)2 if −0.5 ≤ x ≤ 0
+ 0.0150207(x + 0.5)3

1.09861 + 0.333384x + 0.11191x2 if 0 ≤ x ≤ 0.5
+ 0.00875717x3



Example (4 of 4)

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4
x

0.9

1.0

1.1

1.2

1.3

y

f (0.25) S(0.25) Abs. Err. f ′(0.25) S′(0.25) Abs. Err.
1.18907 1.18991 1.97037 × 10−5 0.390991 0.390982 9.67677 × 10−6



Error Analysis

Theorem
Let f ∈ C4[a,b] with max

a≤x≤b

∣∣∣f (4)(x)∣∣∣ = M. If S is the unique clamped

cubic spline interpolant to f with respect to nodes
a = x0 < x1 < · · · < xn = b, then for all x ∈ [a,b],

|f (x)− S(x)| ≤ 5M
384

max
0≤j≤n−1

(xj+1 − xj)
4.



Example

Earlier we found the clamped cubic spline interpolant for
f (x) = ln(ex + 2). In this example xj+1 − xj = 0.5 for all j .

Note that

f (4)(x) =
2ex(4 − 8ex + e2x)

(2 + ex)4

max
−1≤x≤0.5

∣∣∣f (4)(x)∣∣∣ ≈ 0.120398

|f (0.25)− S(0.25)| = 1.97037 × 10−5

≤ 5(0.120398)
384

(0.5)4

≈ 9.798 × 10−5.



Natural Cubic Spline Example (1 of 3)

Consider the following data:

x f (x)
−0.5 −0.02475

−0.25 0.334938
0.0 1.101

The linear system takes the form

A c = y 1.00 0.00 0.00
0.25 1.00 0.25
0.00 0.00 1.00

 c0
c1
c2

 =

 0.00
4.8765

0.00





Natural Cubic Spline Example (2 of 3)

The coefficients of the natural cubic spline interpolant are

ai bi ci di

−0.02475 1.03238 0.0 6.502
0.334938 2.2515 4.8765 −6.502

and the piecewise cubic is

S(x) =
{

−0.02475 + 1.03238(x + 0.5) + 6.502(x + 0.05)3 if −0.5 ≤ x ≤ −0.25
0.334938 + 2.2515(x + 0.25) + 4.8765(x + 0.25)2 − 6.502(x + 0.25)3 if −0.25 ≤ x ≤ 0.



Natural Cubic Spline Example (3 of 3)

-0.5 -0.4 -0.3 -0.2 -0.1
x

0.2

0.4

0.6

0.8

1.0

y



Clamped Cubic Spline Example (1 of 4)

Here we will find the clamped cubic spline interpolant to the function
f (x) = J0(

√
x) at the nodes xi = 5i for i = 0,1, . . . ,10.

x f (x)
0.0 1.0
5.0 0.0904053

10.0 −0.310045
...

...
50.0 0.299655

Note: f ′(0) = −0.25 and f ′(50) = −0.00117217.



Clamped Cubic Spline Example (2 of 4)

The tridiagonal linear system takes the following form



10 5 0 0 · · · 0 0 0 0
5 20 5 0 · · · 0 0 0 0
0 5 20 5 · · · 0 0 0 0
...

. . .
...

0 0 0 0 · · · 5 20 5 0
0 0 0 0 · · · 0 5 20 5
0 0 0 0 · · · 0 0 5 10





c0
c1
c2
...

c8
c9
c10


=



0.204243
0.305487
0.184846
0.100749
0.044242
0.008211

−0.012944
−0.023582
−0.027056
−0.025905
−0.011808


.



Clamped Cubic Spline Example (3 of 4)

The coefficients of the clamped cubic spline interpolant are

ai bi ci di

1 −0.25 0.0154655 −0.00036986
0.09040533 −0.1230843 0.009917643 −0.0002637577
−0.3100448 −0.0436897 0.005961278 −0.0001836499
−0.4024176 0.00214934 0.003206529 −0.0001229411
−0.3268753 0.02499404 0.001362412 −0.0000780158
−0.1775968 0.03276697 0.000192174 −0.0000454083
−0.0146336 0.03128308 −0.00048895 −0.0000224102
0.12675676 0.02471281 −0.00082510 −6.79522 × 10−6

0.22884382 0.01595213 −0.00092703 3.265389 × 10−6

0.28583684 0.00692671 −0.00087805 9.088463 × 10−6



Clamped Cubic Spline Example (4 of 4)

10 20 30 40 50
x

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

y



Homework

▶ Read Section 3.5
▶ Exercises: 1, 3d, 5d, 7d, 25


