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History

Given nodes and data {(xo, f(x0)), (X1, f(x1)), ..., (Xn, f(Xn))} we have
interpolated using:

» Lagrange (or Hermite) interpolating polynomials of degree n (or
2n+ 1), with n+ 1 (or 2n + 2) coefficients,

unfortunately,

» such polynomials can possess large oscillations, and
> the error term can be difficult to construct and estimate.

An alternative is piecewise polynomial approximation, but of what
degree polynomial?

> Piecewise linear results are not differentiable at x;, i = 0,1,...,n.
» Piecewise quadratic results are not twice differentiable at x;,
i=0,1,...,n.

» Piecewise cubic!



Cubic Splines

> A cubic polynomial p(x) = a+ bx + cx? + dx? is specified by 4
coefficients.

» The cubic spline is twice continuously differentiable.

» The cubic spline has the flexibility to satisfy general types of
boundary conditions.

» While the spline may agree with f(x) at the nodes, we cannot

guarantee the derivatives of the spline agree with the derivatives
of f.



Cubic Spline Interpolant (1 of 2)

Given a function f(x) defined on [a, b] and a set of nodes
Aa=Xg <X <Xo<---<Xp=b,
a cubic spline interpolant, S(x), for f(x) is a piecewise cubic

polynomial with components S;(x) defined on [x;, x;,.1] for
j=0,1,...,n—1.

ao + bo(x — Xo) + Co(X — X0)2 + do(x — x0)° if xo < x < Xy
ar + by (x —x) + ci(x — x1)2 + di (x — x1)° if xi <x <X
S(x) = a; + bi(x — x;) + ci(x — x)? + di(x — x)® if x; < X < X4

An1 + bn_1(X = Xn_1) + Co_1(X — Xn_1)2 + Gt (X — Xp_1)® i Xp_1 < X < Xp



Cubic Spline Interpolant (2 of 2)

The cubic spline interpolant will have the following properties.
> S(x5) =f(x;)forj=0,1,...,n.
Si(Xj+1) = Sjr1(Xj1) forj=0,1,...,n—2.
Si(Xj+1) = Sj 1 (Xj41) forj=0,1,....,n—2.
S/ (Xj+1) = S/ 1(Xj41) forj=0,1,...,n—2.
One of the following boundary conditions (BCs) is satisfied:
> S"”(x) = S"(xn) = 0 (free or natural BCs).
> S'(x) = f(x0) and S'(x») = f'(xn) (clamped BCs).

vvyyvyy



Example (1 of 7)

Construct a piecewise cubic spline interpolant for the curve passing

through
{(5,5), (7,2), (9,4)},
with natural boundary conditions.

6_




Example (2 of 7)

This will require two cubics:

So(X) = ap + bo(x — 5) + co(x — 5)% + ap(x — 5)°
Si(x)=ai +bi(x=7)+ci(x —7)?+dy(x —7)°

Since there are 8 coefficients, we must derive 8 equations to solve.



Example (2 of 7)

This will require two cubics:
So(X) = ap + bo(x — 5) + co(x — 5)% + ap(x — 5)°
Si(x) = a1 +bi(x —=7)+ci(x =72+ di(x - 7)°
Since there are 8 coefficients, we must derive 8 equations to solve.

The splines must agree with the function (the y-coordinates) at the
nodes (the x-coordinates).

5= 80(5) = Qo
2=5y(7)=ao+2by + 4cy + 8y
2= 81(7) = a
4 =5/(9) = a1 + 2by + 4cy + 80,



Example (3 of 7)

The first and second derivatives of the cubics must agree at their
shared node x = 7.

86(7) =by+4co+12dy = by = Sg (7)
86/(7) =2¢y+ 12dy = 2¢1 = 84/(7)



Example (3 of 7)

The first and second derivatives of the cubics must agree at their
shared node x = 7.

86(7) =by+4co+12dy = by = Sg (7)
Sy (7) = 2¢o + 12y = 2¢1 = S{/(7)
The final two equations come from the natural boundary conditions.

SY(5) =0 = 2
S/(9) =0 = 2¢; + 124,



Example (4 of 7)

All eight linear equations together form the system:

5=a
2 =ay+2by+4cy + 8dy
2=a

4 =a; +2by +4cy + 8d;
0=bg+4cy+ 12dy — by
0=2¢ + 12dp — 2¢q
0=2¢

0=2c¢ +12d;



Example (5 of 7)

The solution is:

ila b Ci d
17 5
0|5 -5 0 3
1 15 5
2 -7 1% “m



Example (6 of 7)

The natural cubic spline can be expressed as:

17 5 3 .
— (x-— = (x — <x<
5 8(x 5)+32(x 5) if5<x<7
S(x) =
1 15 > 5 3
——(x - -7 - =(x— <x<
2 4(x 7)+16(x 7) 32(x 7 if7<x<9
y
6,
5,
4,




Example (7 of 7)

We can verify the continuity of the first and second derivatives from
the following graphs.

S'(x) S"(x)

1r 151

2t




General Construction Process

Given n+ 1 nodal/data values: {(xo, f(X0)), (X1, f(x1)), .-, (Xn, F(Xn))}
we will create n cubic polynomials.



General Construction Process

Given n+ 1 nodal/data values: {(xo, f(X0)), (X1, f(x1)), .-, (Xn, F(Xn))}
we will create n cubic polynomials.

Forj=0,1,...,n—1 assume
S(x) = aj + bj(x — x) + ¢i(x — )% + di(x — x)°.

We must find a;, b;, ¢; and d; (a total of 4n unknowns) subject to the
conditions specified in the definition.



First Set of Equations

Let hj = xj11 — x; then

Sj(x) = a; = f(x))
Sit1(X+1) = @11 = Sj(x11) = & + bih; + th/? + d/hf

So far we know g, for j = 0,1,...,n— 1 and have n equations and 3n
unknowns.

ar = aop + boho + Coh% + dohg
g1 =8+ bjhj + C]hlz + dfhl3

anp = ap-1+ bn71hn71 + Cn71h%71 + dn71hg_1



First Derivative

The continuity of the first derivative at the nodal points produces n
more equations.

Forj=0,1,...,n—1 we have
S/(x) = bj + 2¢i(x — x)) + 3dj(x — x)).
Thus
Si(x)) = b;
Sii1(Xj+1) = b1 = Sj(Xj+1) = by + 2¢;h; + 3djhj2

Now we have 2n equations and 3n unknowns.



Equations Derived So Far
ay = ap + boho + coh§ + doh
a1 = a + bl + G2 + b}

an=an-1+ bn71hn71 + Cn71hr2771 + dn71h?7_1
by = by + 2¢cohy + 3doh§

bi+1 = bj + 2¢;h; + 3d;h?

by = bn—1 + 2Cn—1hn—1 + 3dn—1h,27_1

The unknowns are b;, ¢;, and d; for j=0,1,...,n—1.



Second Derivative

The continuity of the second derivative at the nodal points produces n
more equations.

Forj=0,1,...,n—1 we have
S/ (x) = 2¢; + 6dj(x — X)).
Thus
S/(x) =2¢

i11(X1) = 2641 = S (X11) = 2¢; + 64;h;

Now we have 3n equations and 3n unknowns.



Equations Derived So Far

8j 1 :aj+b,-h,-+c/-hj2+djhf (forj:0,1,...,n—1)
bjs1 = bj + 2¢ih; + 3d;h? (for j=0,1,....n—1)
2¢c1 = 2¢ + 6dyhg

20j+1 = 201 + 6djhj

2Cn = 2Cn71 + 6dn71 hn71

The unknowns are b;, ¢;, and d; for j =0,1,...,n—1.



Summary of Equations

Forj=0,1,...,n—1 we have

a1 =a + bh + C/'h/-2 + d/hl3
bj+1 = bj + Zthj + 3djhj2

Note: The quantities a; and h; are known.



Summary of Equations

Forj=0,1,...,n—1 we have

g1 =3a + bjhj + C/'h/-2 + d/h13
bj+1 = bj + Zthj + 3djhj2

Note: The quantities a; and h; are known.
Solve the third equation for d; and substitute into the other two
equations.
Ci+1 — G
3h;

This eliminates n equations of the third type.

dj:



Solving the Equations (1 of 3)

a1 =a+ bjhj + thjz + d/h]3



Solving the Equations (1 of 3)

a1 =a+ bjhj + C/h/2 + d/h]?’

=g+ bjh; + Ghf + ( " /) hy
3h;
2
= &+ bl + (26 + G41)



Solving the Equations (1 of 3)

a1 =a+ bjhj + C/h/2 + d/h]?’

= aj—l—bjhj+c/h/-2+ ( /Jr:;hj l) hj"-)’

2

=aj+ bih + gj('ﬁ’cj + Cj+1)

bj+1 = bj + Qthj + 3djhj2



Solving the Equations (1 of 3)

a1 =a+ bjhj + C/h/2 + d/h]3

= aj+bjhj+c/h/-2+ ( /Jr:;hj l) hj"-)’

2
3 (
bj+1 = bj + Qthj + 3djh-

Cit1 C
:bj+20jhj+3( l+3h />hj2

=&+ b+ (26 + Gji1)

= b+ (¢ + ¢j41)



Solving the Equations (1 of 3)

a1 =a+ bjhj + C/h/2 + d/h]3

= aj+bjhj+c/h/-2+ ( /Jr:;hj l) f'lj3

2
3 (
bj+1 = bj + Qthj + 3djh-

Cit1 C
:bj+20jhj+3( j+3h /)hjz

=&+ b+ (26 + Gji1)

= b+ (¢ + ¢j41)

Solve the first equation for b;.

1 h;
by = Fj(ajﬂ - ) - §j(2cj + Gjv1)



Solving the Equations (2 of 3)
We have forj=0,1,...,n—1,

1 hy
b = 4 (31— ) - 326+ G1).

Replace index j by j — 1 to obtain

hi_
b1 = 3 (8~ a-1) — “5(26-1 + ).

=

forj=1,2,...,n.



Solving the Equations (2 of 3)
We have forj=0,1,...,n—1,

1 hy
@=E@H—@—§QQ+%ﬂ

Replace index j by j — 1 to obtain

hi_
b1 = 3 (8~ a-1) — “5(26-1 + ).

B
forj=1,2,...,n.

We can also re-index the earlier equation

b1 = b + (¢ + Gjy1)

to obtain
bj = bj_1 + hi_1(¢cji—1 + ¢)).



Solving the Equations (3 of 3)

by = bj—1 + h—1(cj—1 + ).

Substitute the equations for b;_¢ and bj into the equation above. This
step eliminates n equations of the first type.

1 hj
Fj(a"“ - &)~ 5(26 + Gy1)

1 hi—
=r—(@-a-1)- 73 Y21 +6) + h_1(ci1 +G)
lj—1

Collect all terms involving ¢, to one side.

3 3
hj—16—1 +2¢(hj—1 + hy) + hicji1 = Fj(am - &) - E(af —8-1)

forj=1,2,...,n—1.



Solving the Equations (3 of 3)

by = bj—1 + h—1(cj—1 + ).

Substitute the equations for b;_¢ and bj into the equation above. This
step eliminates n equations of the first type.

1

h.
Fj(am - &) — 5 (26 + Gj1)

3
1 h;
:E(aj_aj71) T(2C/ 1+C])+hl 1(0] 1+Cj)
Collect all terms involving ¢k to one side.

3 3
hj—16—1 +2¢(hj—1 + hy) + hicji1 = Fj(am - &) - K(aj —8-1)

forj=1,2,...,n—1.

Remark: we have n — 1 equations and n+ 1 unknowns.



Natural Boundary Conditions

If S”(x0) = Sg(x0) = 2¢p = 0 then ¢y = 0 and if
SH(Xn) = S;‘)/f‘I (Xn) = 2Cn = O then Cn = 0



Natural Boundary Conditions

If S”(x0) = Sg(x0) = 2¢p = 0 then ¢y = 0 and if
S//(Xn) = S;-,/71 (Xn) = 2Cn = O then Cn = 0

Theorem
Iff is defined ata = xo < X1 < --- < x, = b then f has a unique
natural cubic spline interpolant.



Natural BC Linear System (1 of 3)

In matrix form the system of n+ 1 equations has the form Ac =y
where

[ 1 0 0 0 0
ho 2(ho + hy) hy 0 0
0 hy 2(h1 + h2) ho 0
A= . . . . .
0 0 0 oz 2(hn-2+hn1) oo
0 0 0 0

1
Note: A is a tridiagonal matrix.




Natural BC Linear System (2 of 3)

The vector y on the right-hand side is formed as

i 0
(e —ar) - 2(ar — a)
(e —a) — f(a —ar)

%(anf1 - anfz) - %(%72 - an73)
%(an - an—1) - ﬁ(an—1 - an—2)
0

Note: A is a tridiagonal matrix.




Natural BC Linear System (3 of 3)

- - r O 7
Co 3 3
ci (@ —ar) — 4 (ar — a)
C2 (@ —a) — 5(a — ai)
A ) = .
Cn—1 hn3—1 (an - an71) - hn3—2 (an71 - an72)
e 0

We solve this linear system of equations using a common algorithm
for handling tridiagonal systems.



Natural Cubic Spline Algorithm

INPUT {(X(), f(XO))7 (X‘la f(X1))a SRR (Xna f(X"))}
STEP 1 Fori=0,1,...,n—1set a; = f(x); set hj = X1 — X;.
STEP2 Fori=1,2,...,n— 1 set

Qi = Fi(ai+1 - aj) — b
STEP 3 Set Iy = 1; set up = 0; set zp = 0.
STEP 4 Fori=1,2,....,n—1set i =2(Xj1 — Xi—1) — hi_1pi—1;

_h _ai—hi 1z
setuj=—;setzj= —.
I; I;

STEP 5 Set |/, =1;setc, =0; set z, =0.
STEP6 Forj=n—-1,n-2,...,0set ¢; = z; — p;Cj41; set

b= 3+ =8 hi(cj+1 +26)) Gi+1 — G

! hj 3 3n
STEP 7 Forj=0,1,...,n—10UTPUT g, b, ¢, d.

(a, — aj—1 )

;setd =



Example (1 of 4)

Construct the natural cubic spline interpolant for f(x) = In(e* + 2)
with nodal values:

X f(x)
—1.0 0.86199480
—0.5 0.95802009
0.0 1.0986123
0.5  1.2943767

Calculate the absolute error in using the interpolant to approximate
f(0.25) and '(0.25).



Example (2 of 4)

In this case n = 3 and
hh=hi=h =05
with

ap = 0.86199480, a; = 0.95802009,
a» =1.0986123, a3 = 1.2943767.

The linear system resembles,

1.0 00 00 007 [ 0.0
Ao | 05 20 05 00 || ¢ | _ | 0267402
=100 05 20 05| | c | | 0331034

00 00 00 1.0 C3 0.0



Example (3 of 4)

The coefficients of the piecewise cubics:

‘ a; b,' Ci di

i

0| 0.861995 0.175638 0.0 0.0656509
1| 0.95802 0.224876 0.0984763 0.028281
2| 1.09861 0.344563 0.140898 —0.093918



Example (3 of 4)

The coefficients of the piecewise cubics:

i ‘ a; b; Ci d;
0 | 0.861995 0.175638 0.0 0.0656509
1] 0.95802 0.224876 0.0984763 0.028281

2| 1.09861 0.344563 0.140898 —0.093918

The cubic spline:

0.861995 +0.175638(x +1) if —1 < x < —0.5
+0.0656509(x + 1)3
0.95802 -+ 0.224876(x + 0.5)

S(x)={ +0.0984763(x + 0.5) if -0.5<x<0
+0.028281(x + 0.5)°
1.09861 + 0.344563x ifo<x<05

+0.140898x2 — 0.093918x3



Example (4 of 4)

1.35 P
1.2;
118
of

0.9

T

B S S [ R S BN v
-10 -08 -06 -04 -02 - 0.2 0.4

f(0.25)  S(0.25) Abs. Err. | f(0.25) §'(0.25) Abs. Err.

1.18907 1.19209 3.02154 x 10~3 H 0.390991 0.3974 6.40839 x 103



Clamped Boundary Conditions (1 of 2)

It S'(a) = Sy(a) = f'(a) = bp then
1 h
f'(a) = h—o(a1 —a) — §°(2co +c)
which is equivalent to

3
h0(2C0 + C1) = h—o(a1 — ao) - 3f’(a).

This replaces the first equation in our system of n equations.



Clamped Boundary Conditions (2 of 2)

Likewise if S'(b) = S;,(b) = f'(b) = b, then

bn = bn71 + hn71 (Cn71 + Cn)
1 hn—

= (an - an71) - ”71(20,771 + Cn) + hn71(Cn71 + Cn)
hn_1 3

1

hn—1

A
(an — an—1) + ~5 (Cnt +200)

which is equivalent to

3

Pn-1(Gn-1 +260) = 3F/(b) — 5~
-

(an — an-1)-

This replaces the last equation in our system of n equations.



Clamped BC Linear System (1 of 2)

Theorem

If f is defined at a = xg < Xy < --- < Xp, = b and differentiable at x = a
and at x = b, then f has a unique clamped cubic spline interpolant.

In matrix form the system of n equations has the form Ac =y where

[ 2hg ho 0 0 .. 0
ho 2(h0 + h1) hy 0 s 0
0 hy 2(h1 + h2) ho i 0
A= . : : :
0 0 0 hn72 2(hn72 + hn71) hn71
o 0 0 . Bt 2hn1 |

Note: A is a tridiagonal matrix.




Clamped BC Linear System (2 of 2)

Ch—2

hn—2
3
[

3 (an—1 - an—2) - %—3

2 (a1 — a) — 3f(a)
%(32 —ar)— ,%(31 — &)

(s —a) — p(a —a)

(an—2 - an—S)
(an - an71) - %(anq - an72)
3 (b) — 52(an — an-1)




Coefficients of the Cubic Splines

w

Since g; for j = 0,1,..., nis known, once we solve the linear system
for ¢; (again for j =0,1,...,n) then
1 h;
b = 4 (@1 - 3) - 3 (641 +26)
1
d = T,(Cf“ - )

forj=0,1,...,n—1.



Clamped Cubic Spline Algorithm (1 of 2)

INPUT {(xo0, f(x0)), (X1, f(x1)), .., (Xn, F(Xa))}, f'(X0), @and

f'(Xn).
STEP 1 Fori=0,1,...,n—1seta = f(x;); set hy = X; 1 — X;.
STEP 2 Setag = M - 3f'(x);
o
o = 37 (x,) S(ah’i‘?’—‘)
n—
STEP 3 Fori=1,2,...,n— 1 set
= g(a' —aj) — i(ar —aj_1)
Qj = hi i+1 i hi—1 i i—1)-
Qg

STEP 4 Set /0 = 2h0, Mo = 0.5; Zy = T
0



Clamped Cubic Spline Algorithm (2 of 2)

STEPS5 Fori=1,2,...,n—1set i =2(Xj1 — Xi—1) — hi—1pi—1;
.:ﬁ_z.:ai—hmzm
Hi I i 7/1' .

STEP 6 Set I, = hp_1(2 — ptn_1); Zn = W;
n
STEP7 Forj=n—-1,n-2,...,0set ¢; = z; — pjCj1;

b &1 =8  h(Gu+26) ,  Gui—G
j = - » 0 = :
h; 3 3h;
STEP 8 Forj=0,1,...,n—10UTPUT g, b;, ¢, d,.

n:Zn.




Example (1 of 4)

Construct the clamped cubic spline interpolant for f(x) = In(e* + 2)
with nodal values:

X f(x)
—1.0 0.86199480
—0.5 0.95802009
0.0 1.0986123
0.5  1.2943767

Calculate the absolute error in using the interpolant to approximate
f(0.25) and '(0.25).



Example (2 of 4)

In this case n = 3 and
ho=hy=h,=0.5
with

ap = 0.86199480, a; = 0.95802009,
a =1.0986123, a3 = 1.2943767.

Note that f(—1) ~ 0.155362 and f'(0.5) ~ 0.451863.

The linear system resembles,

10 05 00 007 [ o 0.110064
Ac_ | 05 20 05 00 || ¢ | _ | 0267402 | _
~100 05 20 05| |c | |o033t034 | YV

00 00 05 1.0 Cs 0.181001



Example (3 of 4)

The coefficients of the piecewise cubics:
a; b,‘ Ci d,'

i

0 | 0.861995 0.155362 0.0653748 0.0160031
1| 0.95802 0.23274 0.0893795 0.0150207
2| 1.09861 0.333384 0.11191 0.00875717



Example (3 of 4)

The coefficients of the piecewise cubics:

i a; b,‘ Ci d,'

0| 0.861995 0.155362 0.0653748 0.0160031

1] 0.95802 0.23274 0.0893795 0.0150207
2| 1.09861 0.333384 0.11191 0.00875717

The cubic spline:

0.861995 + 0.155362(x + 1)

+0.0653748(x + 1)2 if —1<x<-05
+0.0160031(x + 1)

0.95802 + 0.23274(x + 0.5)

+0.0893795(x + 0.5)2 if —05<x<0
+0.0150207(x + 0.5)3

1.09861 + 0.333384x + 0.11191x2 if0< x < 0.5
+0.00875717x3




Example (4 of 4)

0.9

X

_‘ 1 ! ! | ! ! ! | ! ! ! | ! ! ! | ! ! ! ! ! ! | ! ! ! | ! !
-1.0 -08 -06 -04 -02 : 02 04
£(0.25)  S(0.25) Abs. Er. | £(0.25)  S'(0.25) Abs. Err.

1.18907 1.18991 1.97037 x 10~° [ 0.390991 0.390982 9.67677 x 10~ °



Error Analysis

Theorem
Let f € C*[a, b] with _max,

f*(x) ‘ = M. If S is the unique clamped

cubic spline /nterpo/ant to f with respect to nodes
a=x < X4 <--<Xxp=Db,thenforall x € [a,b],

5M
706) = ()| < 33 max_ (g1 = %)



Example

Earlier we found the clamped cubic spline interpolant for
f(x) = In(e¥ 4 2). In this example x;,1 — x; = 0.5 for all j.

Note that
2¢"(4 — 8 + )
2+ ex)*

max ‘f(“)(x)‘ ~ 0.120398
—1<x<0.5

|£(0.25) — S(0.25)| = 1.97037 x 105

5(0.120398) .,
< —— (0.
<~ 3sq (0D

~ 9.798 x 107°.

f®(x) =



Natural Cubic Spline Example (1 of 3)

Consider the following data:

x  f(x)
—-0.5 -0.02475
—0.25 0.334938
0.0 1.101

The linear system takes the form

Ac=y
1.00 0.00 0.00 Co 0.00
0.25 1.00 0.25 ci | = | 4.8765
0.00 0.00 1.00 Co 0.00




Natural Cubic Spline Example (2 of 3)

The coefficients of the natural cubic spline interpolant are

a; b Ci d;
—0.02475 1.03238 0.0 6.502
0.334938 2.2515 4.8765 —-6.502

and the piecewise cubic is

S(x) = { ~0.02475 +1.03238(x + 0.5) + 6.502(x + 0.05)3 if—05<x<-025
T\ 0.334938 + 2.2515(x + 0.25) + 4.8765(x + 0.25)% — 6.502(x +0.25)3 if —0.25 < x < 0.



Natural Cubic Spline Example (3 of 3)




Clamped Cubic Spline Example (1 of 4)

Here we will find the clamped cubic spline interpolant to the function
f(x) = Jo(v/x) at the nodes x; = 5i fori =0,1,...,10.

x  f(x)

0.0 1.0
5.0 0.0904053
10.0 —0.310045

50.0 0.299655

Note: f/(0) = —0.25 and f/(50) = —0.00117217.



Clamped Cubic Spline Example (2 of 4)

The tridiagonal linear system takes the following form

0.204243

- o _ 0.305487
10 5 0 0 0 O 0 0 Co 0.184846

5 20 5 0 0 O 0 0 Cq 0.100749

0 5 20 5 0 O 0 0 Co 0.044242

: : : | =| 0.008211

0 0 0 O 5 20 5 0 Cs —0.012944

O 0 0 0 --- 0 5 20 5 Co —0.023582

O 0 0O O --- 0 O 5 10 Cio —0.027056

B o - —0.025905
| —0.011808




Clamped Cubic Spline Example (3 of 4)

The coefficients of the clamped cubic spline interpolant are

a; b,‘ Ci d,‘

1 -0.25 0.0154655 —0.00036986
0.09040533 —0.1230843 0.009917643 —0.0002637577
—0.3100448 —0.0436897 0.005961278 —0.0001836499
—0.4024176 0.00214934 0.003206529 —0.0001229411
—0.3268753 0.02499404 0.001362412 —0.0000780158
—0.1775968 0.03276697 0.000192174 —0.0000454083
—0.0146336 0.03128308 —0.00048895 —0.0000224102
0.12675676 0.02471281 —0.00082510 —6.79522 x 10~°
0.22884382 0.01595213 —0.00092703 3.265389 x 106
0.28583684 0.00692671 —0.00087805 9.088463 x 106



Clamped Cubic Spline Example (4 of 4)

1.0
0.8
0.6
0.4

......................... X

t 10 20 0 40 50

-0.2
-04



Homework

» Read Section 3.5
» Exercises: 1, 3d, 5d, 7d, 25



