Newton Polynomials and Divided Differences MATH 375 *Numerical Analysis*

J Robert Buchanan

Department of Mathematics

Spring 2022

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Background

▶ Constructing Lagrange polynomials is relatively easy as a pencil and paper technique, but difficult to automate.

KORK ERKER ADAM ADA

- ▶ Neville's iterated interpolation can approximate a function at a single point, but does not construct a polynomial.
- \triangleright Today we learn an iterated technique for building up the Lagrange interpolating polynomials.

Polynomial Interpolation

Suppose polynomial $P_n(x)$ interpolates the data:

 $\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}.$

If one more data point is added, say

 $\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)), (x_{n+1}, f(x_{n+1}))\},\$

we would like to use $P_n(x)$ to find $P_{n+1}(x)$.

Polynomial Interpolation

Suppose polynomial $P_n(x)$ interpolates the data:

 $\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}.$

If one more data point is added, say

 $\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)), (x_{n+1}, f(x_{n+1}))\},\$

we would like to use $P_n(x)$ to find $P_{n+1}(x)$.

Imagine that

$$
P_{n+1}(x) = P_n(x) + q(x)
$$

$$
q(x) = P_{n+1}(x) - P_n(x).
$$

Polynomial *q*(*x*) interpolates the data,

$$
\{(x_0,0),(x_1,0),\ldots,(x_n,0),(x_{n+1},f(x_{n+1})-P_n(x_{n+1}))\},\,
$$

KID K@ KKEX KEX E 1090

Lagrange Form of *q*(*x*)

Polynomial *q*(*x*) can be expressed as a single Lagrange basis polynomial.

$$
q(x) = (f(x_{n+1}) - P_n(x_{n+1})) \prod_{k=0}^{n} \frac{x - x_k}{x_{n+1} - x_k}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Lagrange Interpolating Polynomial

Suppose $f(x)$ is a function and $P_n(x)$ is the Lagrange interpolating polynomial of degree at most *n* which agrees with *f*(*x*) at the distinct points $\{x_0, x_1, \ldots, x_n\}$.

KOD KOD KED KED E VAN

Lagrange Interpolating Polynomial

Suppose $f(x)$ is a function and $P_n(x)$ is the Lagrange interpolating polynomial of degree at most *n* which agrees with *f*(*x*) at the distinct points $\{x_0, x_1, \ldots, x_n\}$.

We can think of *Pn*(*x*) as

$$
P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)
$$

+ ... + $a_n(x - x_0) \cdots (x - x_{n-1})$
= $a_0 + \sum_{i=1}^n a_i \prod_{j=0}^{i-1} (x - x_j)$

KORK ERKER ADAM ADA

for an appropriate choice of constants a_0, a_1, \ldots, a_n .

Question: how can we find these constants?

Evaluation of $P_n(x)$

$$
P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)
$$

+ ... + $a_n(x - x_0) \cdots (x - x_{n-1})$

Kロトメ部トメミトメミト ミニのQC

▶ If $x = x_0$ then $P_n(x_0) = f(x_0) = a_0$.

Evaluation of $P_n(x)$

$$
P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)
$$

+ ... + $a_n(x - x_0) \cdots (x - x_{n-1})$

\n- If
$$
x = x_0
$$
 then $P_n(x_0) = f(x_0) = a_0$.
\n- If $x = x_1$ then $P_n(x_1) = f(x_1)$ and
\n

$$
P_n(x_1) = a_0 + a_1(x_1 - x_0)
$$

$$
f(x_1) = f(x_0) + a_1(x_1 - x_0)
$$

$$
a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}
$$

▶ and so on.

K ロ X x (日 X X B X X B X X B X O Q O

Find a_2

$$
P_n(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)
$$

$$
f(x_2) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)
$$

$$
+ a_2(x_2 - x_0)(x_2 - x_1)
$$

$$
a_2(x_2 - x_0)(x_2 - x_1) = f(x_2) - f(x_0) - \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)
$$

$$
a_2 = \frac{f(x_2) - f(x_0) - \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)}
$$

$$
= \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}
$$

Kロトメ部トメミトメミト ミニのQC

Divided Difference Notation (1 of 2)

 \blacktriangleright Denote the **zeroth divided difference** of *f* with respect to x_i by

 $f[x_i] = f(x_i)$.

 \blacktriangleright Denote the **first divided difference** of *f* with respect to x_i and x_{i+1} by

$$
f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}.
$$

▶ Denote the **second divided difference** of *f* with respect to x_i , x_{i+1} , and x_{i+2} by

$$
f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}.
$$

KORKARA KERKER DAGA

Divided Difference Notation (2 of 2)

Proceeding recursively,

 \blacktriangleright Denote the *k*th divided difference of *f* with respect to x_i , x_{i+1} , x_{i+2}, \ldots, x_{i+k} by

$$
f[x_i, x_{i+1}, \ldots, x_{i+k-1}, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \ldots, x_{i+k}] - f[x_i, x_{i+1}, \ldots, x_{i+k-1}]}{x_{i+k} - x_i}.
$$

 \blacktriangleright Finally, denote the *n*th divided difference of *f* with respect to x_0 , *x*1, *x*2, . . . , *xⁿ* by

$$
f[x_0, x_1, \ldots, x_n] = \frac{f[x_1, x_2, \ldots, x_n] - f[x_0, x_1, \ldots, x_{n-1}]}{x_n - x_0}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Summary and Connections

Recall that

$$
P_n(x) = a_0 + \sum_{k=1}^n a_k \prod_{j=0}^{k-1} (x - x_j).
$$

Kロトメ部トメミトメミト ミニのQC

Summary and Connections

Recall that

$$
P_n(x) = a_0 + \sum_{k=1}^n a_k \prod_{j=0}^{k-1} (x - x_j).
$$

Using the divided difference notation we see that

$$
a_0 = f[x_0]
$$

\n
$$
a_1 = f[x_0, x_1]
$$

\n
$$
a_2 = f[x_0, x_1, x_2]
$$

\n:
\n
$$
a_n = f[x_0, x_1, x_2, ..., x_n], \text{ and thus}
$$

\n
$$
P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, ..., x_k] \prod_{j=0}^{k-1} (x - x_j).
$$

This is called **Newton's interpolatory divided difference formula**.

Table Format

x f(*x*) **First Second Third** $\frac{x}{x_0}$ *f*[*x*₀] $f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$ *x*₁ *f*[*x*₁] $f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$ $f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$ $f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$ *x*₂ *f*[*x*₂] $f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$ $f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$ x_3 *f*[x_3]

KORKARA KERKER DAGA

Divided Difference Algorithm

 $INPUT$ nodes $\{(x_0, f(x_0)), \ldots, (x_n, f(x_n))\}$ STEP 1 For $i = 0, 1, ..., n$ set $F_{i,0} = f(x_i)$. STEP 2 For $i = 1, 2, ..., n$ For $i = 1, 2, \ldots, i$ set $F_{i,j} = \frac{F_{i,j-1} - F_{i-1,j-1}}{Y}$ *xⁱ* − *xi*−*^j* STEP 3 OUTPUT *F*0,0, *F*1,1, . . . , *Fn*,*n*. STOP.

Remark: the output values are the top entries in the columns of the preceding table.

KORKARA KERKER DAGA

Example (1 of 2)

 $\overline{}$

Complete the divided difference table and construct the interpolating polynomial.

Example (2 of 2)

$$
P_4(x) = 22.0 + 8.4(x - 3.2) + 2.85561(x - 3.2)(x - 2.7)
$$

- 0.52748(x - 3.2)(x - 2.7)(x - 1.0)
+ 0.255838(x - 3.2)(x - 2.7)(x - 1.0)(x - 4.8)
= 34.96 - 36.1836x + 18.6885x² - 3.52078x³ + 0.255838x⁴

Kロトメ部トメミトメミト ミニのQC

Graph

 $\leftarrow \Box \rightarrow \neg \leftarrow \Box \Box \rightarrow \neg \leftarrow \Box \rightarrow \neg \left$ 290 È

Implications of the Mean Value Theorem

$$
f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i} = f'(z)
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

for some z between x_i and x_i according to the MVT.

Implications of the Mean Value Theorem

$$
f[x_i, x_j] = \frac{f(x_j) - f(x_i)}{x_j - x_i} = f'(z)
$$

for some *z* between *xⁱ* and *x^j* according to the MVT.

This can be generalized.

Theorem

Suppose $f \in \mathcal{C}^n[a, b]$ *and* x_0, x_1, \ldots, x_n *are distinct numbers in* [*a*, *b*]. *There exists* $z \in (a, b)$ *such that*

$$
f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(z)}{n!}.
$$

KORKARYKERKE PORCH

Proof

$$
\blacktriangleright
$$
 Define $g(x) = f(x) - P_n(x)$.

- \triangleright Since $f(x_i) = P_n(x_i)$ for $i = 0, 1, ..., n$, then function *g* has $n + 1$ distinct roots in [*a*, *b*].
- According to the Generalized Rolle's Theorem, $g^{(n)}(z) = 0$ for some $z \in (a, b)$.

$$
0 = g^{(n)}(z)
$$

= $f^{(n)}(z) - P_n^{(n)}(z)$

$$
P_n^{(n)}(z) = f^{(n)}(z)
$$

$$
n! f[x_0, x_1, ..., x_n] = f^{(n)}(z)
$$

$$
f[x_0, x_1, ..., x_n] = \frac{f^{(n)}(z)}{n!}
$$

KORKARA KERKER DAGA

Remarks

- \blacktriangleright The coordinates of the nodes x_0, x_1, \ldots, x_n need not be in ascending order.
- ▶ The spacing between the nodes $\Delta x_i = x_{i+1} x_i$ need not be uniform.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Remarks

- \blacktriangleright The coordinates of the nodes x_0, x_1, \ldots, x_n need not be in ascending order.
- ▶ The spacing between the nodes $\Delta x_i = x_{i+1} x_i$ need not be uniform.

However, if the nodes are in ascending order and the spacing between nodes is uniform, we can modify Newton's divided difference formula.

KORKARA KERKER DAGA

Forward Differences (1 of 4)

Suppose $x_{i+1} - x_i = h > 0$ for $i = 0, 1, ..., n - 1$, then

- \blacktriangleright For any *x* there exists *s* such that $x = x_0 + s h$.
- ▶ In particular $x_i = x_0 + ih$ for $i = 0, 1, \ldots, n$.
- \blacktriangleright For $i = 0, 1, \ldots, n$ the difference

$$
x - x_i = (x_0 + s h) - x_i = (x_0 + s h) - (x_0 + ih) = (s - i)h.
$$

KORKARYKERKE PORCH

Forward Differences (1 of 4)

Suppose $x_{i+1} - x_i = h > 0$ for $i = 0, 1, ..., n - 1$, then

- \blacktriangleright For any *x* there exists *s* such that $x = x_0 + s h$.
- ▶ In particular $x_i = x_0 + ih$ for $i = 0, 1, \ldots, n$.
- \blacktriangleright For $i = 0, 1, \ldots, n$ the difference

$$
x - x_i = (x_0 + s h) - x_i = (x_0 + s h) - (x_0 + ih) = (s - i)h.
$$

$$
P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j)
$$

$$
P_n(x_0 + sh) = f[x_0] + \sum_{k=1}^n f[x_0, \dots, x_k] \prod_{j=0}^{k-1} (x_0 + sh - x_0 - j h)
$$

$$
= f[x_0] + \sum_{k=1}^n f[x_0, \dots, x_k] \prod_{j=0}^{k-1} ((s - j)h)
$$

$$
= f[x_0] + \sum_{k=1}^n h^k f[x_0, \dots, x_k] \prod_{j=0}^{k-1} (s - j)
$$

KORKARYKERKE PORCH

Forward Differences (2 of 4)

Using the binomial coefficient notation

$$
\binom{s}{k} = \frac{s!}{(s-k)! \, k!}
$$
\n
$$
= \frac{s(s-1)\cdots(s-k+1)}{k!}
$$
\n
$$
= \frac{\prod_{j=0}^{k-1} (s-j)}{k!}
$$
\n
$$
s(s-1)\cdots(s-k+1) = k! \binom{s}{k},
$$

we can write

$$
P_n(x) = f[x_0] + \sum_{k=1}^n h^k f[x_0, \ldots, x_k] \prod_{j=0}^{k-1} (s-j)
$$

= $f[x_0] + \sum_{k=1}^n h^k k! {s \choose k} f[x_0, \ldots, x_k].$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Forward Differences (3 of 4)

Recalling Aitken's Δ^2 notation we may write

$$
f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{\Delta f(x_0)}{h}
$$

\n
$$
f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{1}{2h} \left(\frac{\Delta f(x_1)}{h} - \frac{\Delta f(x_0)}{h} \right) = \frac{\Delta^2 f(x_0)}{2h^2}
$$

\n
$$
\vdots
$$

\n
$$
f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}
$$

\n
$$
= \frac{1}{k h} \left(\frac{\Delta^{k-1} f(x_1)}{(k-1)! h^{k-1}} - \frac{\Delta^{k-1} f(x_0)}{(k-1)! h^{k-1}} \right) = \frac{\Delta^k f(x_0)}{k! h^k}.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Forward Differences (4 of 4)

Finally, we may write the **Newton Forward-Difference Formula**:

$$
P_n(x) = f[x_0] + \sum_{k=1}^n h^k k! \binom{s}{k} f[x_0, \dots, x_k]
$$

= $f[x_0] + \sum_{k=1}^n h^k k! \binom{s}{k} \frac{1}{k! h^k} \Delta^k f(x_0)$
= $f[x_0] + \sum_{k=1}^n \binom{s}{k} \Delta^k f(x_0)$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Comments

▶ Forward-differences on the nodes

$$
x_0 < x_1 < \cdots < x_{n-1} < x_n
$$

are useful when *x* is nearer to x_0 than to x_n since generally $f(x_0)$ will be closer to $f(x)$ than will $f(x_n)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Comments

▶ Forward-differences on the nodes

$$
x_0 < x_1 < \cdots < x_{n-1} < x_n
$$

are useful when *x* is nearer to x_0 than to x_n since generally $f(x_0)$ will be closer to $f(x)$ than will $f(x_n)$.

 \blacktriangleright If we need to approximate *f* at *x* near x_n then we should reorder the nodes as

$$
x_n>x_{n-1}>\cdots>x_1>x_0.
$$

The interpolating polynomial becomes

$$
P_n(x) = f[x_n] + \sum_{i=1}^n f[x_n, \ldots, x_{n-i}](x - x_n) \cdots (x - x_{n-i+1}).
$$

KORK ERKER ADAM ADA

Backward Differences (1 of 4)

Definition

Given the sequence $\{ \rho_n \}_{n=0}^\infty$ we define the **backward difference** $\nabla \rho_n$ as

$$
\nabla p_n = p_n - p_{n-1}, \quad \text{for } n \geq 1.
$$

For *k* ≥ 2 we define the *k*th order backward difference as

$$
\nabla^k p_n = \nabla(\nabla^{k-1} p_n).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Backward Differences (2 of 4)

Using the backward difference notation we may write

$$
f[x_n, x_{n-1}] = \frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n} = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}} = \frac{1}{h} \nabla f(x_n)
$$

$$
f[x_n, x_{n-1}, x_{n-2}] = \frac{1}{2h^2} \nabla^2 f(x_n)
$$

$$
\vdots
$$

$$
f[x_n, x_{n-1}, \dots, x_{n-k}] = \frac{1}{k! h^k} \nabla^k f(x_n).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Backward Differences (3 of 4)

Writing $x = x_n + sh$ where $s < 0$ and $x - x_i = (s + n - i)h$ then the interpolating polynomial can be written as

$$
P_n(x) = f[x_n] + \sum_{i=1}^n f[x_n, \dots, x_{n-i}](x - x_n) \cdots (x - x_{n-i+1})
$$

= $f[x_n] + \sum_{i=1}^n h^i s(s+1) \cdots (s+n-i) f[x_n, \dots, x_{n-i}]$
= $f[x_n] + \sum_{i=1}^n \frac{s(s+1) \cdots (s+n-i)}{i!} \nabla^i f[x_n].$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Backward Differences (4 of 4)

Since *s* < 0 we must modify the binomial coefficient notation.

$$
\binom{-s}{k} = \frac{-s(-s-1)\cdots(-s-k+1)}{k!} = (-1)^k \frac{s(s+1)\cdots(s+k-1)}{k!}
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

Backward Differences (4 of 4)

Since *s* < 0 we must modify the binomial coefficient notation.

$$
\binom{-s}{k} = \frac{-s(-s-1)\cdots(-s-k+1)}{k!} = (-1)^k \frac{s(s+1)\cdots(s+k-1)}{k!}
$$

Then we may write the interpolating polynomial as

$$
P_n(x) = f[x_n] + \sum_{i=1}^n \frac{s(s+1)\cdots(s+n-i)}{i!} \nabla^i f[x_n]
$$

= $f[x_n] + \sum_{i=1}^n (-1)^i \binom{-s}{i} \nabla^i f[x_n]$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

This is known as the **Newton backward-difference formula**.

Example (1 of 4)

Suppose we create forward and backward difference interpolating polynomials for $f(x) = \cos x$ using nodes $x_i = 0.2(i + 1)$ for $i = 0, 1, 2, 3.$

KORK ERKER ADAM ADA

Forward divided difference:

 $P_3(x) = 0.998536 + 0.015353x - 0.554404x^2 + 0.0795056x^3$

Backward divided difference:

 $P_3(x) = 0.998537 + 0.0153524x - 0.554404x^2 + 0.0795056x^3$

KORKARA KERKER DAGA

Example (3 of 4)

イロトメ 御 トメ 老 トメ 老 ト È 299

Example (4 of 4)

Difference between the forward and backward interpolation functions.

Error of the forward and backward interpolation functions.

K ロ ⊁ K @ ⊁ K 경 ⊁ K 경 ⊁ (경)

 299

Homework

▶ Read Section 3.3.

▶ Exercises: 1a, 3a, 5a, 13, 17

Kロトメ部トメミトメミト ミニのQC