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Background

▶ Constructing Lagrange polynomials is relatively easy as a pencil
and paper technique, but difficult to automate.

▶ Neville’s iterated interpolation can approximate a function at a
single point, but does not construct a polynomial.

▶ Today we learn an iterated technique for building up the
Lagrange interpolating polynomials.



Polynomial Interpolation

Suppose polynomial Pn(x) interpolates the data:

{(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn))}.

If one more data point is added, say

{(x0, f (x0)), (x1, f (x1)), . . . , (xn, f (xn)), (xn+1, f (xn+1))},

we would like to use Pn(x) to find Pn+1(x).

Imagine that

Pn+1(x) = Pn(x) + q(x)
q(x) = Pn+1(x)− Pn(x).

Polynomial q(x) interpolates the data,

{(x0,0), (x1,0), . . . , (xn,0), (xn+1, f (xn+1)− Pn(xn+1))},
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Lagrange Form of q(x)

Polynomial q(x) can be expressed as a single Lagrange basis
polynomial.

q(x) = (f (xn+1)− Pn(xn+1))
n∏

k=0

x − xk

xn+1 − xk



Lagrange Interpolating Polynomial

Suppose f (x) is a function and Pn(x) is the Lagrange interpolating
polynomial of degree at most n which agrees with f (x) at the distinct
points {x0, x1, . . . , xn}.

We can think of Pn(x) as

Pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1)

+ · · ·+ an(x − x0) · · · (x − xn−1)

= a0 +
n∑

i=1

ai

i−1∏
j=0

(x − xj)

for an appropriate choice of constants a0, a1, . . . , an.

Question: how can we find these constants?
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Evaluation of Pn(x)

Pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1)

+ · · ·+ an(x − x0) · · · (x − xn−1)

▶ If x = x0 then Pn(x0) = f (x0) = a0.

▶ If x = x1 then Pn(x1) = f (x1) and

Pn(x1) = a0 + a1(x1 − x0)

f (x1) = f (x0) + a1(x1 − x0)

a1 =
f (x1)− f (x0)

x1 − x0

▶ and so on.
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Find a2

Pn(x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

f (x2) = f (x0) +
f (x1)− f (x0)

x1 − x0
(x2 − x0)

+ a2(x2 − x0)(x2 − x1)

a2(x2 − x0)(x2 − x1) = f (x2)− f (x0)−
f (x1)− f (x0)

x1 − x0
(x2 − x0)

a2 =
f (x2)− f (x0)− f (x1)−f (x0)

x1−x0
(x2 − x0)

(x2 − x0)(x2 − x1)

=

f (x2)−f (x1)
x2−x1

− f (x1)−f (x0)
x1−x0

x2 − x0



Divided Difference Notation (1 of 2)

▶ Denote the zeroth divided difference of f with respect to xi by

f [xi ] = f (xi).

▶ Denote the first divided difference of f with respect to xi and
xi+1 by

f [xi , xi+1] =
f [xi+1]− f [xi ]

xi+1 − xi
.

▶ Denote the second divided difference of f with respect to xi ,
xi+1, and xi+2 by

f [xi , xi+1, xi+2] =
f [xi+1, xi+2]− f [xi , xi+1]

xi+2 − xi
.



Divided Difference Notation (2 of 2)

Proceeding recursively,
▶ Denote the k th divided difference of f with respect to xi , xi+1,

xi+2, . . . , xi+k by

f [xi , xi+1, . . . , xi+k−1, xi+k ]

=
f [xi+1, xi+2, . . . , xi+k ]− f [xi , xi+1, . . . , xi+k−1]

xi+k − xi
.

▶ Finally, denote the nth divided difference of f with respect to x0,
x1, x2, . . . , xn by

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0
.



Summary and Connections

Recall that

Pn(x) = a0 +
n∑

k=1

ak

k−1∏
j=0

(x − xj).

Using the divided difference notation we see that

a0 = f [x0]

a1 = f [x0, x1]

a2 = f [x0, x1, x2]

...
an = f [x0, x1, x2, . . . , xn], and thus

Pn(x) = f [x0] +
n∑

k=1

f [x0, . . . , xk ]
k−1∏
j=0

(x − xj).

This is called Newton’s interpolatory divided difference formula.
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Table Format

x f (x) First Second Third
x0 f [x0]

f [x0, x1] =
f [x1]− f [x0]

x1 − x0

x1 f [x1] f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

f [x1, x2] =
f [x2]− f [x1]

x2 − x1
f [x0, x1, x2, x3] =

f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0

x2 f [x2] f [x1, x2, x3] =
f [x2, x3]− f [x1, x2]

x3 − x1

f [x2, x3] =
f [x3]− f [x2]

x3 − x2
x3 f [x3]



Divided Difference Algorithm

INPUT nodes {(x0, f (x0)), . . . , (xn, f (xn))}
STEP 1 For i = 0,1, . . . ,n set Fi,0 = f (xi).
STEP 2 For i = 1,2, . . . ,n

For j = 1,2, . . . , i set

Fi,j =
Fi,j−1 − Fi−1,j−1

xi − xi−j

STEP 3 OUTPUT F0,0, F1,1, . . . , Fn,n. STOP.

Remark: the output values are the top entries in the columns of the
preceding table.



Example (1 of 2)

Complete the divided difference table and construct the interpolating
polynomial.

xi f (xi) First Second Third Fourth
3.2 22.0

8.4
2.7 17.8 2.85561

2.11765 −0.52748
1.0 14.2 2.01165 0.255838

6.34211 0.0865307
4.8 38.3 2.26259

16.75
5.6 51.7



Example (2 of 2)

P4(x) = 22.0 + 8.4(x − 3.2) + 2.85561(x − 3.2)(x − 2.7)
− 0.52748(x − 3.2)(x − 2.7)(x − 1.0)
+ 0.255838(x − 3.2)(x − 2.7)(x − 1.0)(x − 4.8)

= 34.96 − 36.1836x + 18.6885x2 − 3.52078x3 + 0.255838x4
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Implications of the Mean Value Theorem

f [xi , xj ] =
f (xj)− f (xi)

xj − xi
= f ′(z)

for some z between xi and xj according to the MVT.

This can be generalized.

Theorem
Suppose f ∈ Cn[a,b] and x0, x1, . . . , xn are distinct numbers in [a,b].
There exists z ∈ (a,b) such that

f [x0, x1, . . . , xn] =
f (n)(z)

n!
.
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Proof

▶ Define g(x) = f (x)− Pn(x).
▶ Since f (xi) = Pn(xi) for i = 0,1, . . . ,n, then function g has n + 1

distinct roots in [a,b].
▶ According to the Generalized Rolle’s Theorem, g(n)(z) = 0 for

some z ∈ (a,b).

0 = g(n)(z)

= f (n)(z)− P(n)
n (z)

P(n)
n (z) = f (n)(z)

n! f [x0, x1, . . . , xn] = f (n)(z)

f [x0, x1, . . . , xn] =
f (n)(z)

n!



Remarks

▶ The coordinates of the nodes x0, x1, . . . , xn need not be in
ascending order.

▶ The spacing between the nodes ∆xi = xi+1 − xi need not be
uniform.

However, if the nodes are in ascending order and the spacing
between nodes is uniform, we can modify Newton’s divided difference
formula.
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Forward Differences (1 of 4)
Suppose xi+1 − xi = h > 0 for i = 0,1, . . . ,n − 1, then
▶ For any x there exists s such that x = x0 + s h.
▶ In particular xi = x0 + ih for i = 0,1, . . . ,n.
▶ For i = 0,1, . . . ,n the difference

x − xi = (x0 + s h)− xi = (x0 + s h)− (x0 + ih) = (s − i)h.

Pn(x) = f [x0] +
n∑

k=1

f [x0, . . . , xk ]
k−1∏
j=0

(x − xj)

Pn(x0 + sh) = f [x0] +
n∑

k=1

f [x0, . . . , xk ]
k−1∏
j=0

(x0 + s h − x0 − j h)

= f [x0] +
n∑

k=1

f [x0, . . . , xk ]
k−1∏
j=0

((s − j)h)

= f [x0] +
n∑

k=1

hk f [x0, . . . , xk ]
k−1∏
j=0

(s − j)



Forward Differences (1 of 4)
Suppose xi+1 − xi = h > 0 for i = 0,1, . . . ,n − 1, then
▶ For any x there exists s such that x = x0 + s h.
▶ In particular xi = x0 + ih for i = 0,1, . . . ,n.
▶ For i = 0,1, . . . ,n the difference

x − xi = (x0 + s h)− xi = (x0 + s h)− (x0 + ih) = (s − i)h.

Pn(x) = f [x0] +
n∑

k=1

f [x0, . . . , xk ]
k−1∏
j=0

(x − xj)

Pn(x0 + sh) = f [x0] +
n∑

k=1

f [x0, . . . , xk ]
k−1∏
j=0

(x0 + s h − x0 − j h)

= f [x0] +
n∑

k=1

f [x0, . . . , xk ]
k−1∏
j=0

((s − j)h)

= f [x0] +
n∑

k=1

hk f [x0, . . . , xk ]
k−1∏
j=0

(s − j)



Forward Differences (2 of 4)
Using the binomial coefficient notation(

s
k

)
=

s!
(s − k)! k !

=
s(s − 1) · · · (s − k + 1)

k !

=

∏k−1
j=0 (s − j)

k !

s(s − 1) · · · (s − k + 1) = k !
(

s
k

)
,

we can write

Pn(x) = f [x0] +
n∑

k=1

hk f [x0, . . . , xk ]
k−1∏
j=0

(s − j)

= f [x0] +
n∑

k=1

hk k !
(

s
k

)
f [x0, . . . , xk ].



Forward Differences (3 of 4)

Recalling Aitken’s ∆2 notation we may write

f [x0, x1] =
f (x1)− f (x0)

x1 − x0
=

∆f (x0)

h

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

1
2h

(
∆f (x1)

h
− ∆f (x0)

h

)
=

∆2f (x0)

2h2

...

f [x0, x1, . . . , xk ] =
f [x1, x2, . . . , xk ]− f [x0, x1, . . . , xk−1]

xk − x0

=
1

k h

(
∆k−1f (x1)

(k − 1)!hk−1 − ∆k−1f (x0)

(k − 1)!hk−1

)
=

∆k f (x0)

k !hk .



Forward Differences (4 of 4)

Finally, we may write the Newton Forward-Difference Formula:

Pn(x) = f [x0] +
n∑

k=1

hk k !
(

s
k

)
f [x0, . . . , xk ]

= f [x0] +
n∑

k=1

hk k !
(

s
k

)
1

k !hk ∆
k f (x0)

= f [x0] +
n∑

k=1

(
s
k

)
∆k f (x0)



Comments

▶ Forward-differences on the nodes

x0 < x1 < · · · < xn−1 < xn

are useful when x is nearer to x0 than to xn since generally f (x0)
will be closer to f (x) than will f (xn).

▶ If we need to approximate f at x near xn then we should reorder
the nodes as

xn > xn−1 > · · · > x1 > x0.

The interpolating polynomial becomes

Pn(x) = f [xn] +
n∑

i=1

f [xn, . . . , xn−i ](x − xn) · · · (x − xn−i+1).
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Backward Differences (1 of 4)

Definition
Given the sequence {pn}∞n=0 we define the backward difference ∇pn
as

∇pn = pn − pn−1, for n ≥ 1.

For k ≥ 2 we define the k th order backward difference as

∇k pn = ∇(∇k−1pn).



Backward Differences (2 of 4)

Using the backward difference notation we may write

f [xn, xn−1] =
f (xn−1)− f (xn)

xn−1 − xn
=

f (xn)− f (xn−1)

xn − xn−1
=

1
h
∇f (xn)

f [xn, xn−1, xn−2] =
1

2h2∇
2f (xn)

...

f [xn, xn−1, . . . , xn−k ] =
1

k !hk ∇
k f (xn).



Backward Differences (3 of 4)

Writing x = xn + sh where s < 0 and x − xi = (s + n − i)h then the
interpolating polynomial can be written as

Pn(x) = f [xn] +
n∑

i=1

f [xn, . . . , xn−i ](x − xn) · · · (x − xn−i+1)

= f [xn] +
n∑

i=1

his(s + 1) · · · (s + n − i)f [xn, . . . , xn−i ]

= f [xn] +
n∑

i=1

s(s + 1) · · · (s + n − i)
i!

∇i f [xn].



Backward Differences (4 of 4)

Since s < 0 we must modify the binomial coefficient notation.(−s
k

)
= −s(−s−1)···(−s−k+1)

k! = (−1)k s(s+1)···(s+k−1)
k!

Then we may write the interpolating polynomial as

Pn(x) = f [xn] +
n∑

i=1

s(s + 1) · · · (s + n − i)
i!

∇i f [xn]

= f [xn] +
n∑

i=1

(−1)i
(
−s
i

)
∇i f [xn]

This is known as the Newton backward-difference formula.



Backward Differences (4 of 4)

Since s < 0 we must modify the binomial coefficient notation.(−s
k

)
= −s(−s−1)···(−s−k+1)

k! = (−1)k s(s+1)···(s+k−1)
k!

Then we may write the interpolating polynomial as

Pn(x) = f [xn] +
n∑

i=1

s(s + 1) · · · (s + n − i)
i!

∇i f [xn]

= f [xn] +
n∑

i=1

(−1)i
(
−s
i

)
∇i f [xn]

This is known as the Newton backward-difference formula.



Example (1 of 4)

Suppose we create forward and backward difference interpolating
polynomials for f (x) = cos x using nodes xi = 0.2(i + 1) for
i = 0,1,2,3.

x cos x First Second Third
0.2 0.980067

−0.295028
0.4 0.921061 −0.458997

−0.478627 0.0795056
0.6 0.825336 −0.411294

−0.643145
0.8 0.696707



Example (2 of 4)

Forward divided difference:

P3(x) = 0.998536 + 0.015353x − 0.554404x2 + 0.0795056x3

Backward divided difference:

P3(x) = 0.998537 + 0.0153524x − 0.554404x2 + 0.0795056x3



Example (3 of 4)
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Example (4 of 4)

Difference between the forward
and backward interpolation
functions.

0.2 0.4 0.6 0.8 1.0
x

-4.×10-7

-3.×10-7

-2.×10-7

-1.×10-7

1.×10-7
y

Error of the forward and
backward interpolation
functions.

0.2 0.4 0.6 0.8 1.0
x

0.0005

0.0010

0.0015

y



Homework

▶ Read Section 3.3.
▶ Exercises: 1a, 3a, 5a, 13, 17


