Hermite Interpolation MATH 375 *Numerical Analysis*

J Robert Buchanan

Department of Mathematics

Spring 2022

Objectives

- ▶ We have encountered the Taylor polynomial and Lagrange interpolating polynomial for approximating functions.
- \blacktriangleright In this lesson we will generalize both types of polynomials to develop a polynomial which agrees with a given function and its derivatives at a set of points.

KORK ERKER ADAM ADA

Osculating Polynomials

Given $n + 1$ numbers $\{x_0, x_1, \ldots, x_n\} \in [a, b]$ and $n + 1$ nonnegative integers $\{m_0, m_1, \ldots, m_n\}$:

KORKARA KERKER DAGA

- ▶ let *m* = max ${m_0, m_1, ..., m_n}$, and
- ▶ consider the set of functions $f \in \mathcal{C}^m[a, b]$.

Osculating Polynomials

Given $n + 1$ numbers $\{x_0, x_1, \ldots, x_n\} \in [a, b]$ and $n + 1$ nonnegative integers $\{m_0, m_1, \ldots, m_n\}$:

- ▶ let *m* = max ${m_0, m_1, ..., m_n}$, and
- ▶ consider the set of functions $f \in \mathcal{C}^m[a, b]$.

Definition

The **osculating polynomial** approximating *f* is the polynomial *P*(*x*) of least degree such that

$$
\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k}
$$

KORKARA KERKER DAGA

for each $i = 0, 1, \ldots, n$ and for $k = 0, 1, \ldots, m_i$.

Remarks

If $n = 0$ then we have one node $\{x_0\}$ and $P(x)$ is the polynomial of least degree such that

$$
\frac{d^k P(x_0)}{dx^k} = \frac{d^k f(x_0)}{dx^k}
$$
 for $k = 0, 1, ..., m_0$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

This is the Taylor polynomial.

Remarks

If $n = 0$ then we have one node $\{x_0\}$ and $P(x)$ is the polynomial of least degree such that

$$
\frac{d^k P(x_0)}{dx^k} = \frac{d^k f(x_0)}{dx^k}
$$
 for $k = 0, 1, ..., m_0$.

This is the Taylor polynomial.

If $m_i = 0$ for $i = 0, 1, ..., n$ then $P(x)$ is the polynomial of least degree such that

$$
P(x_i) = f(x_i)
$$
 for $i = 0, 1, ..., n$.

KORKARA KERKER DAGA

This is the Lagrange interpolating polynomial.

Remarks

If $n = 0$ then we have one node $\{x_0\}$ and $P(x)$ is the polynomial of least degree such that

$$
\frac{d^k P(x_0)}{dx^k} = \frac{d^k f(x_0)}{dx^k}
$$
 for $k = 0, 1, ..., m_0$.

This is the Taylor polynomial.

If $m_i = 0$ for $i = 0, 1, ..., n$ then $P(x)$ is the polynomial of least degree such that

$$
P(x_i) = f(x_i)
$$
 for $i = 0, 1, ..., n$.

This is the Lagrange interpolating polynomial.

 \blacktriangleright Thus we see the osculating polynomial is a generalization of the Taylor and Lagrange interpolating polynomials.

Hermite Polynomials

Definition

The **Hermite polynomial** approximating *f* is the polynomial *H*(*x*) of least degree such that

> $H(x_i) = f(x_i)$ $H'(x_i) = f'(x_i)$

> > K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

for each $i = 0, 1, ..., n$.

Hermite Polynomials

Definition

The **Hermite polynomial** approximating *f* is the polynomial *H*(*x*) of least degree such that

> $H(x_i) = f(x_i)$ $H'(x_i) = f'(x_i)$

for each $i = 0, 1, \ldots, n$.

Remarks:

- \blacktriangleright The Hermite polynomials $H(x)$ agree with $f(x)$ and the derivatives of the Hermite polynomials *H* ′ (*x*) agree with *f* ′ (*x*).
- \blacktriangleright The degree of the Hermite polynomial is $2n + 1$ since $2n + 2$ conditions must be met $(n + 1)$ points and $n + 1$ derivatives).

Main Result

Theorem

If f \in \mathcal{C}^1 [a, *b*] *and* $x_0, x_1, \ldots, x_n \in$ [a, *b*] *are distinct points, the unique polynomial of least degree agreeing with f and f' at* x_0, x_1, \ldots, x_n *is the Hermite polynomial of degree at most* 2*n* + 1 *given by*

$$
H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \widehat{H}_{n,j}(x)
$$

where

$$
H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)] L_{n,j}^2(x)
$$

$$
\widehat{H}_{n,j}(x) = (x - x_j)L_{n,j}^2(x)
$$

KORK ERKER ADAM ADA

and Ln,*j*(*x*) *is jth Lagrange basis polynomial of degree n.*

The question to be answered is "does $H_{2n+1}(x_i) = f(x_i)$ for $i = 0, 1, \ldots, n$?"

The question to be answered is "does $H_{2n+1}(x_i) = f(x_i)$ for $i = 0, 1, \ldots, n$?"

 \blacktriangleright Recall the property of the Lagrange basis function

$$
L_{n,j}(x_i) = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{array} \right.
$$

The question to be answered is "does $H_{2n+1}(x_i) = f(x_i)$ for $i = 0, 1, \ldots, n$?"

 \blacktriangleright Recall the property of the Lagrange basis function

$$
L_{n,j}(x_i) = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{array} \right.
$$

 \blacktriangleright Suppose $i \neq j$, then

$$
H_{n,j}(x_i) = [1 - 2(x_i - x_j)L'_{n,j}(x_j)] L_{n,j}^2(x_i) = 0
$$

$$
\widehat{H}_{n,j}(x_i) = (x_i - x_j)L_{n,j}^2(x_i) = 0.
$$

KORKARYKERKE PORCH

The question to be answered is "does $H_{2n+1}(x_i) = f(x_i)$ for $i = 0, 1, \ldots, n$?"

 \blacktriangleright Recall the property of the Lagrange basis function

$$
L_{n,j}(x_i) = \left\{ \begin{array}{ll} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{array} \right.
$$

 \blacktriangleright Suppose $i \neq j$, then

$$
H_{n,j}(x_i) = [1 - 2(x_i - x_j)L'_{n,j}(x_j)] L_{n,j}^2(x_i) = 0
$$

$$
\widehat{H}_{n,j}(x_i) = (x_i - x_j)L_{n,j}^2(x_i) = 0.
$$

 \blacktriangleright If $i = j$, then

$$
H_{n,j}(x_j) = [1 - 2(x_j - x_j)L'_{n,j}(x_j)] L_{n,j}^2(x_j) = L_{n,j}^2(x_j) = 1
$$

$$
\widehat{H}_{n,j}(x_i) = (x_j - x_j)L_{n,j}^2(x_i) = 0.
$$

KORKARA KERKER DAGA

$$
H_{2n+1}(x_i) = \sum_{j=0}^n f(x_j) H_{n,j}(x_i) + \sum_{j=0}^n f'(x_j) \widehat{H}_{n,j}(x_i)
$$

=
$$
\sum_{j=0, j \neq i}^n f(x_j) \cdot 0 + f(x_i) \cdot 1 + \sum_{j=0}^n f'(x_j) 0
$$

= $f(x_i)$

Kロトメ部トメミトメミト ミニのQC

The next question to be answered is "does $H'_{2n+1}(x_i) = f'(x_i)$ for $i = 0, 1, \ldots, n$?"

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

The next question to be answered is "does $H'_{2n+1}(x_i) = f'(x_i)$ for $i = 0, 1, \ldots, n$?"

▶ Note that

$$
H'_{n,j}(x) = -2L'_{n,j}(x_j)L^2_{n,j}(x) + 2[1 - 2(x - x_j)L'_{n,j}(x_j)] L_{n,j}(x)L'_{n,j}(x)
$$

$$
\hat{H}'_{n,j}(x) = L^2_{n,j}(x) + 2(x - x_j)L_{n,j}(x)L'_{n,j}(x).
$$

The next question to be answered is "does $H'_{2n+1}(x_i) = f'(x_i)$ for $i = 0, 1, \ldots, n$?"

▶ Note that

$$
H'_{n,j}(x) = -2L'_{n,j}(x) L^2_{n,j}(x) + 2 [1 - 2(x - x_j)L'_{n,j}(x)] L_{n,j}(x) L'_{n,j}(x)
$$

$$
\hat{H}'_{n,j}(x) = L^2_{n,j}(x) + 2(x - x_j)L_{n,j}(x) L'_{n,j}(x).
$$

• If
$$
i \neq j
$$
 then $H'_{n,j}(x_i) = 0$ and $\hat{H}'_{n,j}(x_i) = 0$.

The next question to be answered is "does $H'_{2n+1}(x_i) = f'(x_i)$ for $i = 0, 1, \ldots, n$?"

▶ Note that

$$
H'_{n,j}(x) = -2L'_{n,j}(x_j)L^2_{n,j}(x) + 2[1 - 2(x - x_j)L'_{n,j}(x_j)] L_{n,j}(x)L'_{n,j}(x)
$$

$$
\hat{H}'_{n,j}(x) = L^2_{n,j}(x) + 2(x - x_j)L_{n,j}(x)L'_{n,j}(x).
$$

• If
$$
i \neq j
$$
 then $H'_{n,j}(x_i) = 0$ and $\hat{H}'_{n,j}(x_i) = 0$.

• If
$$
i = j
$$
 then $H'_{n,j}(x_j) = -2L'_{n,j}(x_j)(1)^2 + 2(1)L'_{n,j}(x_j) = 0$ and
\n
$$
\hat{H}'_{n,j}(x_j) = (1)^2 = 1.
$$

The next question to be answered is "does $H'_{2n+1}(x_i) = f'(x_i)$ for $i = 0, 1, \ldots, n$?"

▶ Note that

$$
H'_{n,j}(x) = -2L'_{n,j}(x_j)L^2_{n,j}(x) + 2[1 - 2(x - x_j)L'_{n,j}(x_j)] L_{n,j}(x)L'_{n,j}(x)
$$

$$
\hat{H}'_{n,j}(x) = L^2_{n,j}(x) + 2(x - x_j)L_{n,j}(x)L'_{n,j}(x).
$$

• If
$$
i \neq j
$$
 then $H'_{n,j}(x_i) = 0$ and $\hat{H}'_{n,j}(x_i) = 0$.

► If
$$
i = j
$$
 then $H'_{n,j}(x_j) = -2L'_{n,j}(x_j)(1)^2 + 2(1)L'_{n,j}(x_j) = 0$ and
\n $\hat{H}'_{n,j}(x_j) = (1)^2 = 1$.
\n**Note:** $H'_{n,j}(x_i) = 0$ for all $i = 0, 1, ..., n$.

Consequently

$$
H'_{2n+1}(x_i) = \sum_{j=0}^n f(x_j) H'_{n,j}(x_i) + \sum_{j=0}^n f'(x_j) \widehat{H}'_{n,j}(x_i)
$$

=
$$
\sum_{j=0}^n f(x_j) \cdot 0 + \sum_{j=0, j \neq i}^n f'(x_j) \widehat{H}'_{n,j}(x_i) + f'(x_i) \widehat{H}'_{n,i}(x_i)
$$

=
$$
\sum_{j=0, j \neq i}^n f'(x_j) \cdot 0 + f'(x_i) \cdot 1
$$

=
$$
f'(x_i).
$$

Kロトメ部トメミトメミト ミニのQC

Uniqueness of Hermite Polynomial

- \blacktriangleright Suppose $P(x)$ is another polynomial of degree at most $2n+1$ for which $P(x_i) = f(x_i)$ and $P'(x_i) = f'(x_i)$ for $i = 0, 1, ..., n$.
- ▶ Define function $D(x) = H_{2n+1}(x) P(x)$. The polynomial $D(x)$ has degree at most $2n + 1$.
- \blacktriangleright Note that for $i = 0, 1, \ldots, n$,

$$
D(x_i) = H_{2n+1}(x_i) - P(x_i) = f(x_i) - f(x_i) = 0
$$

$$
D'(x_i) = H'_{2n+1}(x_i) - P'(x_i) = f'(x_i) - f'(x_i) = 0
$$

and thus $D(x)$ has roots of multiplicity 2 at the distinct points x_0 , *x*1, . . . , *xn*.

$$
D(x) = (x - x_0)^2(x - x_1)^2 \cdots (x - x_n)^2 Q(x)
$$

 \triangleright Unless $Q(x) = 0$ then $D(x)$ has degree $2n + 2$ or higher which is a contradiction.

Under the assumptions of the previous theorem, if $f \in C^{2n+2}[a,b]$ then

$$
f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(z(x))
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

for some $z(x) \in [a, b]$.

$$
f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(z(x))
$$

$$
f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(z(x))
$$

▶ Note that if $x = x_i$ for some $i = 0, 1, \ldots, n$, the error term is zero and $z(x)$ can be chosen arbitrarily in $[a, b]$.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

$$
f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(z(x))
$$

▶ Note that if $x = x_i$ for some $i = 0, 1, \ldots, n$, the error term is zero and $z(x)$ can be chosen arbitrarily in $[a, b]$.

▶ If $x \neq x_i$ for all $i = 0, 1, ..., n$, then define

$$
g(t) = f(t) - H_{2n+1}(t) - \frac{(t - x_0)^2 \cdots (t - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)]
$$

$$
g(x) = f(x) - H_{2n+1}(x) - \frac{(x - x_0)^2 \cdots (x - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)] = 0
$$

$$
f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(z(x))
$$

▶ Note that if $x = x_i$ for some $i = 0, 1, \ldots, n$, the error term is zero and $z(x)$ can be chosen arbitrarily in $[a, b]$.

▶ If $x \neq x_i$ for all $i = 0, 1, ..., n$, then define

$$
g(t) = f(t) - H_{2n+1}(t) - \frac{(t - x_0)^2 \cdots (t - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)]
$$

\n
$$
g(x) = f(x) - H_{2n+1}(x) - \frac{(x - x_0)^2 \cdots (x - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)] = 0
$$

\n
$$
g(x_i) = f(x_i) - H_{2n+1}(x_i) - \frac{(x_i - x_0)^2 \cdots (x_i - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)] = 0
$$

$$
f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(z(x))
$$

▶ Note that if $x = x_i$ for some $i = 0, 1, \ldots, n$, the error term is zero and *z*(*x*) can be chosen arbitrarily in [*a*, *b*].

▶ If $x \neq x_i$ for all $i = 0, 1, ..., n$, then define

$$
g(t) = f(t) - H_{2n+1}(t) - \frac{(t - x_0)^2 \cdots (t - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)]
$$

\n
$$
g(x) = f(x) - H_{2n+1}(x) - \frac{(x - x_0)^2 \cdots (x - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)] = 0
$$

\n
$$
g(x_i) = f(x_i) - H_{2n+1}(x_i) - \frac{(x_i - x_0)^2 \cdots (x_i - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)] = 0
$$

KORKAR KERKER E VOOR

▶ The last equation holds since $(x_i - x_i)^2$ appears in the numerator.

$$
f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(z(x))
$$

 \triangleright Note that if $x = x_i$ for some $i = 0, 1, \ldots, n$, the error term is zero and *z*(*x*) can be chosen arbitrarily in [*a*, *b*].

If $x \neq x_i$ for all $i = 0, 1, \ldots, n$, then define

$$
g(t) = f(t) - H_{2n+1}(t) - \frac{(t - x_0)^2 \cdots (t - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)]
$$

\n
$$
g(x) = f(x) - H_{2n+1}(x) - \frac{(x - x_0)^2 \cdots (x - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)] = 0
$$

\n
$$
g(x_i) = f(x_i) - H_{2n+1}(x_i) - \frac{(x_i - x_0)^2 \cdots (x_i - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)] = 0
$$

- ▶ The last equation holds since $(x_i x_i)^2$ appears in the numerator.
- ▶ We see that function $g(t)$ has $n+2$ distinct zeros in [a, b]. By Rolle's Theorem, $g'(t)$ has $n+1$ distinct zeros $\xi_0, \xi_1, \ldots, \xi_n$ interspersed between the numbers x_0, x_1, \ldots, x_n and x.

$$
g'(t) = f'(t) - H'_{2n+1}(t) - \frac{2[f(x) - H_{2n+1}(x)]}{(x - x_0)^2 \cdots (x - x_n)^2} \sum_{k=0}^n (t - x_k) \prod_{j=0, j \neq k}^n (t - x_j)^2
$$

K ロ X x 4 → K 差 X X 差 X → X 差 → 9 Q Q →

$$
g'(t) = f'(t) - H'_{2n+1}(t) - \frac{2[f(x) - H_{2n+1}(x)]}{(x - x_0)^2 \cdots (x - x_n)^2} \sum_{k=0}^n (t - x_k) \prod_{j=0, j \neq k}^n (t - x_j)^2
$$

$$
g'(x_i) = f'(x_i) - H'_{2n+1}(x_i) - \frac{2[f(x) - H_{2n+1}(x)]}{(x - x_0)^2 \cdots (x - x_n)^2} \sum_{k=0}^n (x_i - x_k) \prod_{j=0, j \neq k}^n (x_i - x_j)^2 = 0
$$

for $i = 0, 1, ..., n$.

$$
g'(t) = f'(t) - H'_{2n+1}(t) - \frac{2[f(x) - H_{2n+1}(x)]}{(x - x_0)^2 \cdots (x - x_n)^2} \sum_{k=0}^n (t - x_k) \prod_{j=0, j \neq k}^n (t - x_j)^2
$$

$$
g'(x_i) = f'(x_i) - H'_{2n+1}(x_i) - \frac{2[f(x) - H_{2n+1}(x)]}{(x - x_0)^2 \cdots (x - x_n)^2} \sum_{k=0}^n (x_i - x_k) \prod_{j=0, j \neq k}^n (x_i - x_j)^2 = 0
$$

for $i = 0, 1, ..., n$.

- \blacktriangleright Thus $g(t)$ has $2n + 2$ distinct zeros in the interval [a, b].
- Since $g'(t)$ is $2n + 1$ times differentiable (because $f(x)$ is $2n + 2$ times differentiable, then by the Generalized Rolle's Theorem, there exists $z \in [a, b]$ such that $g^{(2n+2)}(z) = 0$.

$$
g(t) = f(t) - H_{2n+1}(t) - \frac{(t - x_0)^2 \cdots (t - x_n)^2}{(x - x_0)^2 \cdots (x - x_n)^2} [f(x) - H_{2n+1}(x)]
$$

$$
g^{(2n+2)}(t) = f^{(2n+2)}(t) - H_{2n+1}^{(2n+2)}(t) - \frac{[f(x) - H_{2n+1}(x)]}{(x - x_0)^2 \cdots (x - x_n)^2} \frac{d^{2n+2}}{dx^{2n+2}} [(t - x_0)^2 \cdots (t - x_n)^2]
$$

$$
= f^{(2n+2)}(t) - \frac{[f(x) - H_{2n+1}(x)] (2n+2)!}{(x - x_0)^2 \cdots (x - x_n)^2}
$$

KORKARA KERKER DAGA

$$
g^{(2n+2)}(t) = f^{(2n+2)}(t) - \frac{[f(x) - H_{2n+1}(x)](2n+2)!}{(x-x_0)^2 \cdots (x-x_n)^2}
$$

$$
0 = f^{(2n+2)}(z) - \frac{[f(x) - H_{2n+1}(x)](2n+2)!}{(x-x_0)^2 \cdots (x-x_n)^2}
$$

$$
f(x) = H_{2n+1}(x) + \frac{(x-x_0)^2 \cdots (x-x_n)^2}{(2n+2)!} f^{(2n+2)}(z)
$$

Kロトメ部トメミトメミト ミニのQC

Example

Construct a Hermite interpolating polynomial for the following data.

K □ K K @ K K 할 K K 할 K (할 K) 할 *K* () Q Q Q

Solution (1 of 3)

Let $x_0 = 0.1$, $x_1 = 0.2$, and $x_2 = 0.3$ and make a list of the Lagrange basis polynomials.

$$
L_{2,0}(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = 50x^2 - 25x + 3
$$

\n
$$
L'_{2,0}(x) = 100x - 25
$$

\n
$$
L_{2,1}(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = -100x^2 + 40x - 3
$$

\n
$$
L'_{2,1}(x) = -200x + 40
$$

\n
$$
L_{2,2}(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = 50x^2 - 15x + 1
$$

\n
$$
L'_{2,2}(x) = 100x - 15
$$

Solution (2 of 3)

Second, list the Hermite polynomials $H_{2,j}(x)$ and $H_{2,j}(x)$.

$$
H_{2,0}(x) = [1 - 2(x - x_0)L'_{2,0}(x_0)] L^2_{2,0}(x)
$$

\n
$$
= 75000x^5 - 80000x^4 + 32750x^3 - 6350x^2 + 570x - 18
$$

\n
$$
\hat{H}_{2,0}(x) = (x - x_0)L^2_{2,0}(x)
$$

\n
$$
= 2500x^5 - 2750x^4 + 1175x^3 - 242.5x^2 + 24x - 0.9
$$

\n
$$
H_{2,1}(x) = [1 - 2(x - x_1)L'_{2,1}(x_1)] L^2_{2,1}(x)
$$

\n
$$
= 10000x^4 - 8000x^3 + 2200x^2 - 240x + 9
$$

\n
$$
\hat{H}_{2,1}(x) = (x - x_1)L^2_{2,1}(x)
$$

\n
$$
= 10000x^5 - 10000x^4 + 3800x^3 - 680x^2 + 57x - 1.8
$$

\n
$$
H_{2,2}(x) = [1 - 2(x - x_2)L'_{2,2}(x_2)] L^2_{2,2}(x)
$$

\n
$$
= -75000x^5 + 70000x^4 - 24750x^3 + 4150x^2 - 330x + 10
$$

\n
$$
\hat{H}_{2,2}(x) = (x - x_2)L^2_{2,2}(x)
$$

\n
$$
= 2500x^5 - 2250x^4 + 775x^3 - 127.5x^2 + 10x - 0.3
$$

Solution (3 of 3)

Lastly, the Hermite interpolating polynomial is

$$
H_5(x) = f(x_0)H_{2,0}(x) + f'(x_0)\hat{H}_{2,0}(x)
$$

+ $f(x_1)H_{2,1}(x) + f'(x_1)\hat{H}_{2,1}(x)$
+ $f(x_2)H_{2,2}(x) + f'(x_2)\hat{H}_{2,2}(x)$
= -0.29004996 $H_{2,0}(x)$ - 2.8019975 $\hat{H}_{2,0}(x)$
- 0.56079734 $H_{2,1}(x)$ - 2.6159201 $\hat{H}_{2,1}(x)$
- 0.81401972 $H_{2,2}(x)$ - 2.9734038 $\hat{H}_{2,2}(x)$.

KID KARA KE KA E KO GO

Graphs of Function and Approximation

The function approximated in the previous example is $f(x) = x^2 \cos x - 3x$.

KOD KARD KED KED BE YOUR

Graph of Absolute Error

f(0.18) = −0.50812346435 $H_5(0.18) = -0.50812346583$ $|f(0.18) - H_5(0.18)| = 1.48 \times 10^{-9}$

KORK STRAIN A STRAIN A STRAIN

Error Analysis

A bound for the error in the previous approximation can be found.

$$
|f(0.18) - H_5(0.18)|
$$

=
$$
\left| \frac{(0.18 - 0.1)^2 (0.18 - 0.2)^2 (0.18 - 0.3)^2}{6!} f^{(6)}(z) \right|
$$

$$
\leq (5.12 \times 10^{-11}) \max_{0.1 < z < 0.3} |f^{(6)}(z)|
$$

=
$$
(5.12 \times 10^{-11}) f^{(6)}(0.1)
$$

= 1.52168 × 10⁻⁹

KO KKØ KKE KKE KVE BI KORO

Divided Differences

- \blacktriangleright Suppose we are given $\{(x_0, f(x_0), f'(x_0)), (x_1, f(x_1), f'(x_1)), \ldots, (x_n, f(x_n), f'(x_n))\}.$
- \triangleright Define a new sequence $z_0, z_1, \ldots, z_{2n+1}$ by

$$
z_{2i} = x_i
$$
 for $i = 0, 1, ..., n$
 $z_{2i+1} = x_i$ for $i = 0, 1, ..., n$.

KORKARA KERKER DAGA

 \triangleright Create the divided difference table using $z_0, z_1, \ldots, z_{2n+1}$.

Divided Differences

- \blacktriangleright Suppose we are given $\{(x_0, f(x_0), f'(x_0)), (x_1, f(x_1), f'(x_1)), \ldots, (x_n, f(x_n), f'(x_n))\}.$
- \triangleright Define a new sequence $z_0, z_1, \ldots, z_{2n+1}$ by

$$
z_{2i} = x_i
$$
 for $i = 0, 1, ..., n$
 $z_{2i+1} = x_i$ for $i = 0, 1, ..., n$.

KORKARA KERKER DAGA

 \triangleright Create the divided difference table using $z_0, z_1, \ldots, z_{2n+1}$.

Note: use $f'(x_i)$ in place of the first divided difference $f[z_2, z_2, z_1+1]$ (since otherwise this divided difference would be undefined).

Divided Difference Table

$$
H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \ldots, z_k](x - z_0)(x - z_1) \cdots (x - z_{k-1})
$$

Kロトメ部トメミトメミト ミニのQC

Example

Use the divided difference approach to approximate *f*(0.18) given the following data.

Solution (1 of 2)

Original data is shown in blue.

The values at the top of each column are the coefficients used to construct the Hermite interpolating polynomial.

Solution (2 of 2)

Using the results from the table of divided differences yields

$$
H_5(x) = f[z_0] + f[z_0, z_1](x - z_0) + f[z_0, z_1, z_2](x - z_0)(x - z_1)
$$

+ $f[z_0, z_1, z_2, z_3](x - z_0)(x - z_1)(x - z_2)$
+ $f[z_0, z_1, z_2, z_3, z_4](x - z_0)(x - z_1)(x - z_2)(x - z_3)$
+ $f[z_0, z_1, z_2, z_3, z_4, z_5](x - z_0)(x - z_1)(x - z_2)(x - z_3)(x - z_4)$

$$
H_5(0.18) = -0.29004996 - 2.8019975(0.08)
$$

+ 0.94523716(0.08)² - 0.29700724(0.08)²(-0.02)
- 0.47928682(0.08)²(-0.02)²
+ 0.04933582(0.08)²(-0.02)²(-0.12)
= -0.50812346583

KO K K Ø K K E K K E K Y S K Y K K K K K

Homework

▶ Read Section 3.4.

▶ Exercises: 1a, 3a, 8

Kロトメ部トメミトメミト ミニのQC