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Objectives

▶ We have encountered the Taylor polynomial and Lagrange
interpolating polynomial for approximating functions.

▶ In this lesson we will generalize both types of polynomials to
develop a polynomial which agrees with a given function and its
derivatives at a set of points.



Osculating Polynomials

Given n + 1 numbers {x0, x1, . . . , xn} ∈ [a,b] and n + 1 nonnegative
integers {m0,m1, . . . ,mn}:
▶ let m = max{m0,m1, . . . ,mn}, and
▶ consider the set of functions f ∈ Cm[a,b].

Definition
The osculating polynomial approximating f is the polynomial P(x)
of least degree such that

dk P(xi)

dxk =
dk f (xi)

dxk

for each i = 0,1, . . . ,n and for k = 0,1, . . . ,mi .
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Remarks

▶ If n = 0 then we have one node {x0} and P(x) is the polynomial
of least degree such that

dk P(x0)

dxk =
dk f (x0)

dxk for k = 0,1, . . . ,m0.

This is the Taylor polynomial.

▶ If mi = 0 for i = 0,1, . . . ,n then P(x) is the polynomial of least
degree such that

P(xi) = f (xi) for i = 0,1, . . . ,n.

This is the Lagrange interpolating polynomial.
▶ Thus we see the osculating polynomial is a generalization of the

Taylor and Lagrange interpolating polynomials.
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Hermite Polynomials

Definition
The Hermite polynomial approximating f is the polynomial H(x) of
least degree such that

H(xi) = f (xi)

H ′(xi) = f ′(xi)

for each i = 0,1, . . . ,n.

Remarks:
▶ The Hermite polynomials H(x) agree with f (x) and the

derivatives of the Hermite polynomials H ′(x) agree with f ′(x).
▶ The degree of the Hermite polynomial is 2n + 1 since 2n + 2

conditions must be met (n + 1 points and n + 1 derivatives).
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Main Result

Theorem
If f ∈ C1[a,b] and x0, x1, . . . , xn ∈ [a,b] are distinct points, the unique
polynomial of least degree agreeing with f and f ′ at x0, x1, . . . , xn is
the Hermite polynomial of degree at most 2n + 1 given by

H2n+1(x) =
n∑

j=0

f (xj)Hn,j(x) +
n∑

j=0

f ′(xj)Ĥn,j(x)

where

Hn,j(x) =
[
1 − 2(x − xj)L′

n,j(xj)
]

L2
n,j(x)

Ĥn,j(x) = (x − xj)L2
n,j(x)

and Ln,j(x) is jth Lagrange basis polynomial of degree n.



Proof (1 of 4)

The question to be answered is “does H2n+1(xi) = f (xi) for
i = 0,1, . . . ,n?”

▶ Recall the property of the Lagrange basis function

Ln,j(xi) =

{
0 if i ̸= j ,
1 if i = j .

▶ Suppose i ̸= j , then

Hn,j(xi) =
[
1 − 2(xi − xj)L′

n,j(xj)
]

L2
n,j(xi) = 0

Ĥn,j(xi) = (xi − xj)L2
n,j(xi) = 0.

▶ If i = j , then

Hn,j(xj) =
[
1 − 2(xj − xj)L′

n,j(xj)
]

L2
n,j(xj) = L2

n,j(xj) = 1

Ĥn,j(xi) = (xj − xj)L2
n,j(xi) = 0.
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Ĥn,j(xi) = (xj − xj)L2
n,j(xi) = 0.



Proof (2 of 4)

H2n+1(xi) =
n∑

j=0

f (xj)Hn,j(xi) +
n∑

j=0

f ′(xj)Ĥn,j(xi)

=
n∑

j=0,j ̸=i

f (xj) · 0 + f (xi) · 1 +
n∑

j=0

f ′(xj)0

= f (xi)



Proof (3 of 4)

The next question to be answered is “does H ′
2n+1(xi) = f ′(xi) for

i = 0,1, . . . ,n?”

▶ Note that

H ′
n,j(x) = −2L′

n,j(xj)L2
n,j(x) + 2

[
1 − 2(x − xj)L′

n,j(xj)
]

Ln,j(x)L′
n,j(x)

Ĥ ′
n,j(x) = L2

n,j(x) + 2(x − xj)Ln,j(x)L′
n,j(x).

▶ If i ̸= j then H ′
n,j(xi) = 0 and Ĥ ′

n,j(xi) = 0.

▶ If i = j then H ′
n,j(xj) = −2L′

n,j(xj)(1)2 + 2(1)L′
n,j(xj) = 0 and

Ĥ ′
n,j(xj) = (1)2 = 1.

Note: H ′
n,j(xi) = 0 for all i = 0,1, . . . ,n.
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Proof (4 of 4)

Consequently

H ′
2n+1(xi) =

n∑
j=0

f (xj)H ′
n,j(xi) +

n∑
j=0

f ′(xj)Ĥ ′
n,j(xi)

=
n∑

j=0

f (xj) · 0 +
n∑

j=0,j ̸=i

f ′(xj)Ĥ ′
n,j(xi) + f ′(xi)Ĥ ′

n,i(xi)

=
n∑

j=0,j ̸=i

f ′(xj) · 0 + f ′(xi) · 1

= f ′(xi).



Uniqueness of Hermite Polynomial

▶ Suppose P(x) is another polynomial of degree at most 2n + 1 for
which P(xi) = f (xi) and P ′(xi) = f ′(xi) for i = 0,1, . . . ,n.

▶ Define function D(x) = H2n+1(x)− P(x). The polynomial D(x)
has degree at most 2n + 1.

▶ Note that for i = 0,1, . . . ,n,

D(xi) = H2n+1(xi)− P(xi) = f (xi)− f (xi) = 0
D′(xi) = H ′

2n+1(xi)− P ′(xi) = f ′(xi)− f ′(xi) = 0

and thus D(x) has roots of multiplicity 2 at the distinct points x0,
x1, . . . , xn.

D(x) = (x − x0)
2(x − x1)

2 · · · (x − xn)
2Q(x)

▶ Unless Q(x) = 0 then D(x) has degree 2n + 2 or higher which is
a contradiction.



Error Formula

Under the assumptions of the previous theorem, if f ∈ C2n+2[a,b] then

f (x) = H2n+1(x) +
(x − x0)

2 · · · (x − xn)
2

(2n + 2)!
f (2n+2)(z(x))

for some z(x) ∈ [a,b].



Proof (1 of 3)

f (x) = H2n+1(x) +
(x − x0)

2 · · · (x − xn)
2

(2n + 2)!
f (2n+2)(z(x))

▶ Note that if x = xi for some i = 0, 1, . . . , n, the error term is zero and
z(x) can be chosen arbitrarily in [a, b].

▶ If x ̸= xi for all i = 0, 1, . . . , n, then define

g(t) = f (t)− H2n+1(t)−
(t − x0)

2 · · · (t − xn)
2

(x − x0)2 · · · (x − xn)2 [f (x)− H2n+1(x)]

g(x) = f (x)− H2n+1(x)−
(x − x0)

2 · · · (x − xn)
2

(x − x0)2 · · · (x − xn)2 [f (x)− H2n+1(x)] = 0

g(xi) = f (xi)− H2n+1(xi)−
(xi − x0)

2 · · · (xi − xn)
2

(x − x0)2 · · · (x − xn)2 [f (x)− H2n+1(x)] = 0

▶ The last equation holds since (xi − xi)
2 appears in the numerator.

▶ We see that function g(t) has n + 2 distinct zeros in [a, b]. By Rolle’s
Theorem, g′(t) has n + 1 distinct zeros ξ0, ξ1, . . . , ξn interspersed
between the numbers x0, x1, . . . , xn, and x .
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Proof (2 of 3)

g′(t) = f ′(t)− H′
2n+1(t)−

2 [f (x)− H2n+1(x)]
(x − x0)2 · · · (x − xn)2

n∑
k=0

(t − xk )
n∏

j=0,j ̸=k

(t − xj )
2

g′(xi ) = f ′(xi )− H′
2n+1(xi )−

2 [f (x)− H2n+1(x)]
(x − x0)2 · · · (x − xn)2

n∑
k=0

(xi − xk )
n∏

j=0,j ̸=k

(xi − xj )
2 = 0

for i = 0, 1, . . . , n.
▶ Thus g(t) has 2n + 2 distinct zeros in the interval [a, b].
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Proof (3 of 3)

g(2n+2)(t) = f (2n+2)(t)− [f (x)− H2n+1(x)] (2n + 2)!
(x − x0)2 · · · (x − xn)2

0 = f (2n+2)(z)− [f (x)− H2n+1(x)] (2n + 2)!
(x − x0)2 · · · (x − xn)2

f (x) = H2n+1(x) +
(x − x0)

2 · · · (x − xn)
2

(2n + 2)!
f (2n+2)(z)



Example

Construct a Hermite interpolating polynomial for the following data.

x f (x) f ′(x)
0.1 −0.29004996 −2.8019975
0.2 −0.56079734 −2.6159201
0.3 −0.81401972 −2.9734038



Solution (1 of 3)

Let x0 = 0.1, x1 = 0.2, and x2 = 0.3 and make a list of the Lagrange
basis polynomials.

L2,0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)
= 50x2 − 25x + 3

L′
2,0(x) = 100x − 25

L2,1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)
= −100x2 + 40x − 3

L′
2,1(x) = −200x + 40

L2,2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)
= 50x2 − 15x + 1

L′
2,2(x) = 100x − 15



Solution (2 of 3)
Second, list the Hermite polynomials H2,j(x) and Ĥ2,j(x).

H2,0(x) =
[
1 − 2(x − x0)L′

2,0(x0)
]

L2
2,0(x)

= 75000x5 − 80000x4 + 32750x3 − 6350x2 + 570x − 18

Ĥ2,0(x) = (x − x0)L2
2,0(x)

= 2500x5 − 2750x4 + 1175x3 − 242.5x2 + 24x − 0.9

H2,1(x) =
[
1 − 2(x − x1)L′

2,1(x1)
]

L2
2,1(x)

= 10000x4 − 8000x3 + 2200x2 − 240x + 9

Ĥ2,1(x) = (x − x1)L2
2,1(x)

= 10000x5 − 10000x4 + 3800x3 − 680x2 + 57x − 1.8

H2,2(x) =
[
1 − 2(x − x2)L′

2,2(x2)
]

L2
2,2(x)

= −75000x5 + 70000x4 − 24750x3 + 4150x2 − 330x + 10

Ĥ2,2(x) = (x − x2)L2
2,2(x)

= 2500x5 − 2250x4 + 775x3 − 127.5x2 + 10x − 0.3



Solution (3 of 3)

Lastly, the Hermite interpolating polynomial is

H5(x) = f (x0)H2,0(x) + f ′(x0)Ĥ2,0(x)

+ f (x1)H2,1(x) + f ′(x1)Ĥ2,1(x)

+ f (x2)H2,2(x) + f ′(x2)Ĥ2,2(x)

= − 0.29004996H2,0(x)− 2.8019975Ĥ2,0(x)

− 0.56079734H2,1(x)− 2.6159201Ĥ2,1(x)

− 0.81401972H2,2(x)− 2.9734038Ĥ2,2(x).



Graphs of Function and Approximation

The function approximated in the previous example is
f (x) = x2 cos x − 3x .
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Graph of Absolute Error

0.15 0.20 0.25 0.30
x

5.×10-8

1.×10-7

1.5×10-7

2.×10-7

Abs. Err.

|f(x)-H5(x)|

|f'(x)-H5'(x)|

f (0.18) = −0.50812346435
H5(0.18) = −0.50812346583

|f (0.18)− H5(0.18)| = 1.48 × 10−9



Error Analysis

A bound for the error in the previous approximation can be found.

|f (0.18)− H5(0.18)|

=

∣∣∣∣ (0.18 − 0.1)2(0.18 − 0.2)2(0.18 − 0.3)2

6!
f (6)(z)

∣∣∣∣
≤ (5.12 × 10−11) max

0.1<z<0.3
|f (6)(z)|

= (5.12 × 10−11)f (6)(0.1)

= 1.52168 × 10−9



Divided Differences

▶ Suppose we are given
{(x0, f (x0), f ′(x0)), (x1, f (x1), f ′(x1)), . . . , (xn, f (xn), f ′(xn))}.

▶ Define a new sequence z0, z1, . . . , z2n+1 by

z2i = xi for i = 0,1, . . . ,n
z2i+1 = xi for i = 0,1, . . . ,n.

▶ Create the divided difference table using z0, z1, . . . , z2n+1.

Note: use f ′(xi) in place of the first divided difference f [z2i , z2i+1]
(since otherwise this divided difference would be undefined).
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Divided Difference Table

First divided Second divided
z f [z] differences differences

z0 = x0 f [z0] = f (x0)
f [z0, z1] = f ′(x0)

z1 = x0 f [z1] = f (x0) f [z0, z1, z2] =
f [z1,z2]−f [z0,z1]

z2−z0

f [z1, z2] =
f [z2]−f [z1]

z2−z1

z2 = x1 f [z2] = f (x1) f [z1, z2, z3] =
f [z2,z3]−f [z1,z2]

z3−z1

f [z2, z3] = f ′(x1)

z3 = x1 f [z3] = f (x1) f [z2, z3, z4] =
f [z3,z4]−f [z2,z3]

z4−z2

f [z3, z4] =
f [z4]−f [z3]

z4−z3

z4 = x2 f [z4] = f (x2) f [z3, z4, z5] =
f [z4,z5]−f [z3,z4]

z5−z3

f [z4, z5] = f ′(x2)
z5 = x2 f [z5] = f (x2)

H2n+1(x) = f [z0] +
2n+1∑
k=1

f [z0, . . . , zk ](x − z0)(x − z1) · · · (x − zk−1)



Example

Use the divided difference approach to approximate f (0.18) given the
following data.

x f (x) f ′(x)
0.1 −0.29004996 −2.8019975
0.2 −0.56079734 −2.6159201
0.3 −0.81401972 −2.9734038



Solution (1 of 2)

Original data is shown in blue.

0.1 −0.29004996
−2.8019975

0.1 −0.29004996 0.94523716
−2.7074738 −0.29700724

0.2 −0.56079734 0.91553643 −0.47928682
−2.6159201 −0.39286461 0.04933582

0.2 −0.56079734 0.83696351 −0.46941966
−2.5322238 −0.48674854

0.3 −0.81401972 0.78828866
−2.9734038

0.3 −0.81401972

The values at the top of each column are the coefficients used to
construct the Hermite interpolating polynomial.



Solution (2 of 2)

Using the results from the table of divided differences yields

H5(x) = f [z0] + f [z0, z1](x − z0) + f [z0, z1, z2](x − z0)(x − z1)

+ f [z0, z1, z2, z3](x − z0)(x − z1)(x − z2)

+ f [z0, z1, z2, z3, z4](x − z0)(x − z1)(x − z2)(x − z3)

+ f [z0, z1, z2, z3, z4, z5](x − z0)(x − z1)(x − z2)(x − z3)(x − z4)

H5(0.18) = − 0.29004996 − 2.8019975(0.08)

+ 0.94523716(0.08)2 − 0.29700724(0.08)2(−0.02)

− 0.47928682(0.08)2(−0.02)2

+ 0.04933582(0.08)2(−0.02)2(−0.12)
= − 0.50812346583



Homework

▶ Read Section 3.4.
▶ Exercises: 1a, 3a, 8


