Error Analysis for Iterative Methods
 MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics
Spring 2022

Objectives

We wish to investigate and measure the order of convergence of the iterative root-finding schemes, such as Newton's Method.

Order of Convergence

Definition
Suppose the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to p with $p_{n} \neq p$ for all n. If there exist positive constants α and λ for which

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda
$$

then $\left\{p_{n}\right\}_{n=0}^{\infty}$ is said to converge to p of order α with asymptotic error constant λ.

Order of Convergence

Definition

Suppose the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges to p with $p_{n} \neq p$ for all n. If there exist positive constants α and λ for which

$$
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{\alpha}}=\lambda
$$

then $\left\{p_{n}\right\}_{n=0}^{\infty}$ is said to converge to p of order α with asymptotic error constant λ.

Remarks:

- If $\alpha=1$ and $\lambda<1$, the convergence is linear.
- If $\alpha=2$, the convergence is quadratic.
- Larger α generally means "faster" convergence.

Example (1 of 3)

Find the order of convergence and asymptotic error constant for the
sequence $\left\{\frac{1}{n+1}\right\}_{n=0}^{\infty}$.

Example (1 of 3)

Find the order of convergence and asymptotic error constant for the
sequence $\left\{\frac{1}{n+1}\right\}_{n=0}^{\infty}$.
Let $p_{n}=\frac{1}{n+1}$, then $p_{n} \rightarrow 0=p$.

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{1}{n+2}-0\right|}{\left|\frac{1}{n+1}-0\right|^{1}}=\lim _{n \rightarrow \infty} \frac{n+1}{n+2}=1
$$

Thus $\alpha=1$ and $\lambda=1$.

Example (2 of 3)

Find the order of convergence and asymptotic error constant for the
sequence $\left\{\frac{1}{2^{n}}\right\}_{n=0}^{\infty}$.

Example (2 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{\frac{1}{2^{n}}\right\}_{n=0}^{\infty}$.
Let $p_{n}=\frac{1}{2^{n}}$, then $p_{n} \rightarrow 0=p$.

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{1}{2^{n+1}}-0\right|}{\left|\frac{1}{2^{n}}-0\right|^{\alpha}}=\lim _{n \rightarrow \infty} \frac{1}{2} \frac{1}{2^{n(1-\alpha)}}=\frac{1}{2}
$$

if $\alpha=1$. The asymptotic error constant is $\lambda=1 / 2$ which implies this sequence is linearly convergent.

Example (2 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{\frac{1}{2^{n}}\right\}_{n=0}^{\infty}$.
Let $p_{n}=\frac{1}{2^{n}}$, then $p_{n} \rightarrow 0=p$.

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{1}{2^{n+1}}-0\right|}{\left|\frac{1}{2^{n}}-0\right|^{\alpha}}=\lim _{n \rightarrow \infty} \frac{1}{2} \frac{1}{2^{n(1-\alpha)}}=\frac{1}{2}
$$

if $\alpha=1$. The asymptotic error constant is $\lambda=1 / 2$ which implies this sequence is linearly convergent.

Note: If $\alpha<1$ the limit is 0 (not positive). If $\alpha>1$ the sequence diverges.

Example (3 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{2^{-(3 / 2)^{n}}\right\}_{n=0}^{\infty}$.

Example (3 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{2^{-(3 / 2)^{n}}\right\}_{n=0}^{\infty}$. Let $p_{n}=2^{-(3 / 2)^{n}}$, then $p_{n} \rightarrow 0=p$.

$$
\lim _{n \rightarrow \infty} \frac{\left|2^{-(3 / 2)^{n+1}}-0\right|}{\left|2^{-(3 / 2)^{n}}-0\right|^{\alpha}}=\lim _{n \rightarrow \infty} 2^{-(3 / 2)^{n}[3 / 2-\alpha]}=1
$$

if $\alpha=3 / 2$. The asymptotic error constant is $\lambda=1$.

Comparison of Convergence

Let $p_{n}=\frac{1}{2^{n}}$ and $q_{n}=2^{-(3 / 2)^{n}}$, then

n	p_{n}	q_{n}
0	1.00000	0.50000000
1	0.50000	0.35355300
2	0.25000	0.21022400
3	0.12500	0.09638820
4	0.06250	0.02992510
5	0.03125	0.00517671

Note: $p_{n} \rightarrow 0$ and $q_{n} \rightarrow 0$ but the q_{n} sequence is converging "faster".

Convergence of Iterative Techniques

Remark: most of the root-finding techniques we have considered converge only linearly.

Convergence of Iterative Techniques

Remark: most of the root-finding techniques we have considered converge only linearly.
Theorem
Suppose $g \in \mathcal{C}[a, b]$ and $g(x) \in[a, b]$ for all $x \in[a, b]$ and $g^{\prime} \in \mathcal{C}(a, b)$ with

$$
\left|g^{\prime}(x)\right| \leq k<1 \quad \text { for all } x \in(a, b)
$$

If $g^{\prime}(p) \neq 0$ then for any $p_{0} \neq p$ in $[a, b]$, the sequence $p_{n}=g\left(p_{n-1}\right)$, $n \geq 1$ converges linearly to the unique fixed point p in $[a, b]$.

Proof (1 of 2)

- The Fixed-Point Theorem asserts the sequence converges to the unique fixed point p.
- According to the MVT

$$
\begin{aligned}
\frac{p_{n+1}-p}{p_{n}-p} & =\frac{g\left(p_{n}\right)-g(p)}{p_{n}-p} \\
& =g^{\prime}\left(z_{n}\right) \\
p_{n+1}-p & =g^{\prime}\left(z_{n}\right)\left(p_{n}-p\right)
\end{aligned}
$$

where z_{n} lies between p and p_{n}.

- Since $p_{n} \rightarrow p$ as $n \rightarrow \infty$, then $z_{n} \rightarrow p$ by the Squeeze Theorem.

Proof (2 of 2)

Since g^{\prime} is continuous

$$
\lim _{n \rightarrow \infty} g^{\prime}\left(z_{n}\right)=g^{\prime}\left(\lim _{n \rightarrow \infty} z_{n}\right)=g^{\prime}(p)
$$

Therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{1}} & =\lim _{n \rightarrow \infty} \frac{\left|g\left(p_{n}\right)-g(p)\right|}{\left|p_{n}-p\right|} \\
& =\lim _{n \rightarrow \infty}\left|g^{\prime}\left(z_{n}\right)\right| \\
& =\left|g^{\prime}(p)\right|>0
\end{aligned}
$$

Improving Convergence

Remark: we can only have faster than linear convergence when $g^{\prime}(p)=0$.

Improving Convergence

Remark: we can only have faster than linear convergence when $g^{\prime}(p)=0$.

Strategy: given an equation $f(x)=0$ with an unknown root p in the interval $[a, b]$, we want to write down an equivalent fixed-point problem $p=g(p)$ such that $g^{\prime}(p)=0$.

Useful Result

Theorem

Let p be a solution of $x=g(x)$ and suppose that $g^{\prime}(p)=0$. Suppose further that $g^{\prime \prime}$ is continuous with $\left|g^{\prime \prime}(x)\right|<M$ on an open interval I containing p. Then there exists a $\delta>0$ such that for $p_{0} \in[p-\delta, p+\delta]$, the sequence defined by $p_{n}=g\left(p_{n-1}\right)$ for $n \geq 1$ converges at least quadratically to p. Moreover, for large values of n,

$$
\left|p_{n+1}-p_{n}\right|<\frac{M}{2}\left|p_{n}-p\right|^{2}
$$

Proof (1 of 4)

- Choose $k \in(0,1)$ and $\delta>0$ so that
- $[p-\delta, p+\delta] \subseteq I$,
- $\left|g^{\prime}(x)\right| \leq k$, and
- $g^{\prime \prime}$ is continuous.

Proof (1 of 4)

- Choose $k \in(0,1)$ and $\delta>0$ so that
- $[p-\delta, p+\delta] \subseteq I$,
- $\left|g^{\prime}(x)\right| \leq k$, and
- $g^{\prime \prime}$ is continuous.
- As in a previous proof, $p_{n} \in[p-\delta, p+\delta]$ for $n=0,1, \ldots$.

Proof (1 of 4)

- Choose $k \in(0,1)$ and $\delta>0$ so that
- $[p-\delta, p+\delta] \subseteq I$,
- $\left|g^{\prime}(x)\right| \leq k$, and
- $g^{\prime \prime}$ is continuous.
- As in a previous proof, $p_{n} \in[p-\delta, p+\delta]$ for $n=0,1, \ldots$.
- Find the linear Taylor polynomial for $g(x)$ expanded about p.

Proof (2 of 4)

$$
g(x)=g(p)+g^{\prime}(p)(x-p)+\frac{g^{\prime \prime}(z(x))}{2}(x-p)^{2}
$$

Proof (2 of 4)

$$
\begin{aligned}
& g(x)=g(p)+g^{\prime}(p)(x-p)+\frac{g^{\prime \prime}(z(x))}{2}(x-p)^{2} \\
& g(x)=p+\frac{g^{\prime \prime}(z(x))}{2}(x-p)^{2}
\end{aligned}
$$

Proof (2 of 4)

$$
\begin{aligned}
g(x) & =g(p)+g^{\prime}(p)(x-p)+\frac{g^{\prime \prime}(z(x))}{2}(x-p)^{2} \\
g(x) & =p+\frac{g^{\prime \prime}(z(x))}{2}(x-p)^{2} \\
g\left(p_{n}\right) & =p+\frac{g^{\prime \prime}\left(z\left(p_{n}\right)\right)}{2}\left(p_{n}-p\right)^{2}
\end{aligned}
$$

Proof (2 of 4)

$$
\begin{aligned}
g(x) & =g(p)+g^{\prime}(p)(x-p)+\frac{g^{\prime \prime}(z(x))}{2}(x-p)^{2} \\
g(x) & =p+\frac{g^{\prime \prime}(z(x))}{2}(x-p)^{2} \\
g\left(p_{n}\right) & =p+\frac{g^{\prime \prime}\left(z\left(p_{n}\right)\right)}{2}\left(p_{n}-p\right)^{2} \\
p_{n+1}-p & =\frac{g^{\prime \prime}\left(z\left(p_{n}\right)\right)}{2}\left(p_{n}-p\right)^{2}
\end{aligned}
$$

where $z\left(p_{n}\right)$ lies between p_{n} and p.

Proof (3 of 4)

$$
\begin{aligned}
p_{n+1}-p & =\frac{g^{\prime \prime}\left(z\left(p_{n}\right)\right)}{2}\left(p_{n}-p\right)^{2} \\
\frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{2}} & =\frac{\left|g^{\prime \prime}\left(z\left(p_{n}\right)\right)\right|}{2}
\end{aligned}
$$

Proof (3 of 4)

$$
\begin{aligned}
p_{n+1}-p & =\frac{g^{\prime \prime}\left(z\left(p_{n}\right)\right)}{2}\left(p_{n}-p\right)^{2} \\
\frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{2}} & =\frac{\left|g^{\prime \prime}\left(z\left(p_{n}\right)\right)\right|}{2} \\
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{2}} & =\lim _{n \rightarrow \infty} \frac{\left|g^{\prime \prime}\left(z\left(p_{n}\right)\right)\right|}{2}
\end{aligned}
$$

Proof (3 of 4)

$$
\begin{aligned}
p_{n+1}-p & =\frac{g^{\prime \prime}\left(z\left(p_{n}\right)\right)}{2}\left(p_{n}-p\right)^{2} \\
\frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{2}} & =\frac{\left|g^{\prime \prime}\left(z\left(p_{n}\right)\right)\right|}{2} \\
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{2}} & =\lim _{n \rightarrow \infty} \frac{\left|g^{\prime \prime}\left(z\left(p_{n}\right)\right)\right|}{2} \\
\lim _{n \rightarrow \infty} \frac{\left|p_{n+1}-p\right|}{\left|p_{n}-p\right|^{2}} & =\frac{\left|g^{\prime \prime}(p)\right|}{2}
\end{aligned}
$$

by the Squeeze Theorem.
Conclusion: sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ is quadratically convergent if $g^{\prime \prime}(p) \neq 0$ and has higher order convergence if $g^{\prime \prime}(p)=0$.

Proof (4 of 4)

Recall that

$$
\left|p_{n+1}-p\right|=\frac{\left|g^{\prime \prime}\left(z\left(p_{n}\right)\right)\right|}{2}\left|p_{n}-p\right|^{2}
$$

Since $\left|g^{\prime \prime}(x)\right|<M$ for $x \in[p-\delta, p+\delta]$, then

$$
\left|p_{n+1}-p\right|<\frac{M}{2}\left|p_{n}-p\right|^{2}
$$

Developing the Method

- Given that $f(x)=0$ has a solution p, define

$$
g(x)=x-\phi(x) f(x)
$$

Developing the Method

- Given that $f(x)=0$ has a solution p, define

$$
g(x)=x-\phi(x) f(x) .
$$

- g has a fixed point at p.

Developing the Method

- Given that $f(x)=0$ has a solution p, define

$$
g(x)=x-\phi(x) f(x)
$$

- g has a fixed point at p.
- We want to choose $\phi(x)$ so that $g^{\prime}(p)=0$.

$$
\begin{aligned}
g^{\prime}(x) & =1-\phi^{\prime}(x) f(x)-\phi(x) f^{\prime}(x) \\
g^{\prime}(p) & =1-\phi^{\prime}(p) f(p)-\phi(p) f^{\prime}(p) \\
0 & =1-\phi(p) f^{\prime}(p) \\
\phi(p) & =\frac{1}{f^{\prime}(p)}
\end{aligned}
$$

Developing the Method

- Given that $f(x)=0$ has a solution p, define

$$
g(x)=x-\phi(x) f(x)
$$

- g has a fixed point at p.
- We want to choose $\phi(x)$ so that $g^{\prime}(p)=0$.

$$
\begin{aligned}
g^{\prime}(x) & =1-\phi^{\prime}(x) f(x)-\phi(x) f^{\prime}(x) \\
g^{\prime}(p) & =1-\phi^{\prime}(p) f(p)-\phi(p) f^{\prime}(p) \\
0 & =1-\phi(p) f^{\prime}(p) \\
\phi(p) & =\frac{1}{f^{\prime}(p)}
\end{aligned}
$$

- Let $\phi(x)=\frac{1}{f^{\prime}(x)}$ and then

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)} \quad \Longrightarrow \quad p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}
$$

Developing the Method

- Given that $f(x)=0$ has a solution p, define

$$
g(x)=x-\phi(x) f(x)
$$

- g has a fixed point at p.
- We want to choose $\phi(x)$ so that $g^{\prime}(p)=0$.

$$
\begin{aligned}
g^{\prime}(x) & =1-\phi^{\prime}(x) f(x)-\phi(x) f^{\prime}(x) \\
g^{\prime}(p) & =1-\phi^{\prime}(p) f(p)-\phi(p) f^{\prime}(p) \\
0 & =1-\phi(p) f^{\prime}(p) \\
\phi(p) & =\frac{1}{f^{\prime}(p)}
\end{aligned}
$$

- Let $\phi(x)=\frac{1}{f^{\prime}(x)}$ and then

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)} \quad \Longrightarrow \quad p_{n}=p_{n-1}-\frac{f\left(p_{n-1}\right)}{f^{\prime}\left(p_{n-1}\right)}
$$

Newton's Method is quadratically convergent!

Multiple Roots

Remark: Newton's Method will run into trouble if $f^{\prime}(x)=0$.

Multiple Roots

Remark: Newton's Method will run into trouble if $f^{\prime}(x)=0$.
Definition
A solution p of $f(x)=0$ is a root of multiplicity m if $f(x)$ can be written as

$$
f(x)=(x-p)^{m} q(x)
$$

for $x \neq p$ and where $\lim _{x \rightarrow p} q(x) \neq 0$.
A root of multiplicity 1 is called a simple root.

Determining the Multiplicity

Theorem
Function $f \in \mathcal{C}[a, b]$ has a simple root at $p \in(a, b)$ if and only if $f(p)=0$ and $f^{\prime}(p) \neq 0$.

Theorem
Function $f \in \mathcal{C}^{m}[a, b]$ has a root of multiplicity m at p if and only if

$$
0=f(p)=f^{\prime}(p)=\cdots=f^{(m-1)}(p)
$$

but $f^{(m)}(p) \neq 0$.

Example (1 of 2)

Each of the following functions has a root at $p=1$. Determine the multiplicity of this root for each function.

$$
\begin{aligned}
f(x) & =x^{3}-4 x^{2}+5 x-2 \\
g(x) & =x^{3}-6 x^{2}+11 x-6
\end{aligned}
$$

Example (1 of 2)

Each of the following functions has a root at $p=1$. Determine the multiplicity of this root for each function.

$$
\begin{aligned}
f(x) & =x^{3}-4 x^{2}+5 x-2 \\
g(x) & =x^{3}-6 x^{2}+11 x-6
\end{aligned}
$$

n	$f^{(n)}(x)$	$f^{(n)}(1)$	$g^{(n)}(x)$	$g^{(n)}(1)$
1	$3 x^{2}-8 x+5$	0	$3 x^{2}-12 x+11$	2
2	$6 x-8$	-2	$6 x-12$	-6
3	6	6	6	6

Example (1 of 2)

Each of the following functions has a root at $p=1$. Determine the multiplicity of this root for each function.

$$
\begin{aligned}
f(x) & =x^{3}-4 x^{2}+5 x-2 \\
g(x) & =x^{3}-6 x^{2}+11 x-6
\end{aligned}
$$

n	$f^{(n)}(x)$	$f^{(n)}(1)$	$g^{(n)}(x)$	$g^{(n)}(1)$
1	$3 x^{2}-8 x+5$	0	$3 x^{2}-12 x+11$	2
2	$6 x-8$	-2	$6 x-12$	-6
3	6	6	6	6

Conclusion: $f(x)$ has a root of multiplicity 2 at $x=1$ while $g(x)$ has a root of multiplicity 1 .

Example (2 of 2)

Using an initial approximation of $p_{0}=0.5$ to the root $p=1$, use Newton's Method to approximate the root with $\epsilon=10^{-2}$ for each of the following functions.

$$
\begin{aligned}
f(x) & =x^{3}-4 x^{2}+5 x-2 \\
g(x) & =x^{3}-6 x^{2}+11 x-6
\end{aligned}
$$

Example (2 of 2)

Using an initial approximation of $p_{0}=0.5$ to the root $p=1$, use Newton's Method to approximate the root with $\epsilon=10^{-2}$ for each of the following functions.

$$
\begin{aligned}
f(x) & =x^{3}-4 x^{2}+5 x-2 \\
g(x) & =x^{3}-6 x^{2}+11 x-6
\end{aligned}
$$

	$f(x)$ Multiplicity 2	$g(x)$ Multiplicity 1
n	p_{n}	p_{n}
0	0.5000	0.5000
1	0.7143	0.8261
2	0.8429	0.9677
3	0.9164	0.9985
4	0.9567	1.0000
5	0.9779	1.0000

Remark: Newton's Method applied to the function with the root of higher multiplicity converges slower.

Improving Convergence at Roots of High Multiplicity

Define $\mu(x)=\frac{f(x)}{f^{\prime}(x)}$, then

$$
\begin{aligned}
\mu(x) & =\frac{(x-p)^{m} q(x)}{m(x-p)^{m-1} q(x)+(x-p)^{m} q^{\prime}(x)} \\
& =\frac{(x-p) q(x)}{m q(x)+(x-p) q^{\prime}(x)}
\end{aligned}
$$

Improving Convergence at Roots of High Multiplicity

Define $\mu(x)=\frac{f(x)}{f^{\prime}(x)}$, then

$$
\begin{aligned}
\mu(x) & =\frac{(x-p)^{m} q(x)}{m(x-p)^{m-1} q(x)+(x-p)^{m} q^{\prime}(x)} \\
& =\frac{(x-p) q(x)}{m q(x)+(x-p) q^{\prime}(x)} \\
\mu^{\prime}(x) & =\frac{m(q(x))^{2}+(x-p)^{2}\left(q^{\prime}(x)\right)^{2}-(x-p)^{2} q(x) q^{\prime \prime}(x)}{\left(m q(x)+(x-p) q^{\prime}(x)\right)^{2}}
\end{aligned}
$$

Improving Convergence at Roots of High Multiplicity

Define $\mu(x)=\frac{f(x)}{f^{\prime}(x)}$, then

$$
\begin{aligned}
\mu(x) & =\frac{(x-p)^{m} q(x)}{m(x-p)^{m-1} q(x)+(x-p)^{m} q^{\prime}(x)} \\
& =\frac{(x-p) q(x)}{m q(x)+(x-p) q^{\prime}(x)} \\
\mu^{\prime}(x) & =\frac{m(q(x))^{2}+(x-p)^{2}\left(q^{\prime}(x)\right)^{2}-(x-p)^{2} q(x) q^{\prime \prime}(x)}{\left(m q(x)+(x-p) q^{\prime}(x)\right)^{2}}
\end{aligned}
$$

Observe: $\mu(p)=0$ but $\mu^{\prime}(p) \neq 0$.

Improving Convergence at Roots of High Multiplicity

Define $\mu(x)=\frac{f(x)}{f^{\prime}(x)}$, then

$$
\begin{aligned}
\mu(x) & =\frac{(x-p)^{m} q(x)}{m(x-p)^{m-1} q(x)+(x-p)^{m} q^{\prime}(x)} \\
& =\frac{(x-p) q(x)}{m q(x)+(x-p) q^{\prime}(x)} \\
\mu^{\prime}(x) & =\frac{m(q(x))^{2}+(x-p)^{2}\left(q^{\prime}(x)\right)^{2}-(x-p)^{2} q(x) q^{\prime \prime}(x)}{\left(m q(x)+(x-p) q^{\prime}(x)\right)^{2}}
\end{aligned}
$$

Observe: $\mu(p)=0$ but $\mu^{\prime}(p) \neq 0$.
Now use Newton's Method to approximate a root of $\mu(x)$.

$$
g(x)=x-\frac{\mu(x)}{\mu^{\prime}(x)}=x-\frac{f(x) f^{\prime}(x)}{\left[f^{\prime}(x)\right]^{2}-f(x) f^{\prime \prime}(x)}
$$

Example

Compare the number of iterations required to approximate the root $p=1$ for the function $f(x)=x^{3}-4 x^{2}+5 x-2$ starting with $p_{0}=0.5$ using Newton's Method and the modified Newton's Method.

Example

Compare the number of iterations required to approximate the root $p=1$ for the function $f(x)=x^{3}-4 x^{2}+5 x-2$ starting with $p_{0}=0.5$ using Newton's Method and the modified Newton's Method.

| n | Original | p_{n} |
| :---: | :---: | :---: | | Modified |
| :---: |
| p_{n} |

Homework

- Read Section 2.4.
- Exercises: 1, 5, 7, 9

