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Objectives

We wish to investigate and measure the order of convergence of the
iterative root-finding schemes, such as Newton’s Method.



Order of Convergence

Definition
Suppose the sequence {p,}5°, converges to p with p, # p for all n. If
there exist positive constants o and X for which

|pn+1 |

”HOO |pn pl~

then {pn}>°, is said to converge to p of order o with asymptotic
error constant \.



Order of Convergence

Definition
Suppose the sequence {p,}5°, converges to p with p, # p for all n. If
there exist positive constants o and X for which

|pn+1 |
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then {pn}>°, is said to converge to p of order o with asymptotic
error constant \.

Remarks:
> If « =1 and )\ < 1, the convergence is linear.
> If a = 2, the convergence is quadratic.
» Larger a generally means “faster” convergence.



Example (1 of 3)

Find the order of convergence and asymptotic error constant for the
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sequence § —— .
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Example (1 of 3)

Find the order of convergence and asymptotic error constant for the

1 o0
sequence § —— .
a { n+1 }n—O

Let py = 715, then p, — 0 = p.

1 1
i~ 0|

Thusa=1and A = 1.
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Find the order of convergence and asymptotic error constant for the
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Example (2 of 3)

Find the order of convergence and asymptotic error constant for the

1 oo
sequence {n} )
2 n=0
Let p, = 2, then p, — 0 = p.
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if « = 1. The asymptotic error constant is A = 1/2 which implies this
sequence is linearly convergent.



Example (2 of 3)

Find the order of convergence and asymptotic error constant for the

1 o0
sequence {2”} .
n=0

Let p, = 2, then p, — 0 = p.

-0 1 1 1

n—oo ’% _O‘O‘ o n|—>moo§ on(i—a) — 2
if « = 1. The asymptotic error constant is A = 1/2 which implies this
sequence is linearly convergent.

Note: If a < 1 the limit is 0 (not positive). If & > 1 the sequence
diverges.



Example (3 of 3)

Find the order of convergence and asymptotic error constant for the
sequence {2~ /)"y



Example (3 of 3)

Find the order of convergence and asymptotic error constant for the
sequence {2 (3/2)"00
Let p, = 2-G/2" thenpn—>0 p.

‘2_(3/2)n+1 _ 0
_ i 0—(8/2)[3/2—a] _
nln;o ’2 (3/2)" _ O’ nh—)n;o2 1

if « = 3/2. The asymptotic error constant is A = 1.



Comparison of Convergence

1 n
Let p, = o and g, = 2-©/2" then

Pn Gn

1.00000 | 0.50000000
0.50000 | 0.35355300
0.25000 | 0.21022400
0.12500 | 0.09638820
0.06250 | 0.02992510
0.03125 | 0.00517671
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Note: p, — 0 and g, — 0 but the g, sequence is converging “faster”.



Convergence of lterative Techniques

Remark: most of the root-finding techniques we have considered
converge only linearly.



Convergence of lterative Techniques

Remark: most of the root-finding techniques we have considered
converge only linearly.

Theorem
Suppose g € C[a, b] and g(x) € [a,b] forall x € [a,b] and g’ € C(a, b)
with

g (x)| < k<1 forallx € (a,b).

Ifg'(p) # 0 then for any py # p in [a, b, the sequence p, = g(pn-1),
n > 1 converges linearly to the unique fixed point p in [a, b].



Proof (1 of 2)

» The Fixed-Point Theorem asserts the sequence converges to the
unique fixed point p.

» According to the MVT
Poii —P  _ 9(Pn) — 9(p)
Pn—p Pn—p
Pt —P = g'(Zn)(Pn—P)

where z, lies between p and pj,.
» Since p, — p as n — oo, then z, — p by the Squeeze Theorem.



Proof (2 of 2)

Since ¢’ is continuous
Jim,9/(z0) =9 (fim20) = 9 p).
Therefore

i [Pt fel im 19(Pn) —g(p)|
n—oo |pp — Pl n—oco  |pp—p|
= lim |g'(z0)|

= 1g'(p)| > 0.



Improving Convergence

Remark: we can only have faster than linear convergence when
g(p)=0.



Improving Convergence

Remark: we can only have faster than linear convergence when
g'(p) =0.
Strategy: given an equation f(x) = 0 with an unknown root p in the

interval [a, b], we want to write down an equivalent fixed-point
problem p = g(p) such that g’(p) = 0.



Useful Result

Theorem

Let p be a solution of x = g(x) and suppose that g'(p) = 0. Suppose
further that g” is continuous with |g”(x)| < M on an open interval |
containing p. Then there exists a § > 0 such that for

po € [p— 6, p+ d], the sequence defined by p, = g(pn—1) forn > 1
converges at least quadratically to p. Moreover, for large values of n,

m 2
[Pr+t = Pal < 5 lPn =PI



Proof (1 of 4)

» Choose k € (0,1) and § > 0 so that
> [p—d6,p+dC 1,
> |g/(x)| < k, and
> g’ is continuous.



Proof (1 of 4)

» Choose k € (0,1) and § > 0 so that
> [p—d6,p+dC 1,
> |g/(x)| < k, and
> g’ is continuous.

> As in a previous proof, p, € [p—d,p+ 6] forn=0,1,....



Proof (1 of 4)

» Choose k € (0,1) and § > 0 so that

> [p—5,p+6 C 1,
> |g'(x)| < k, and
> g’ is continuous.

> As in a previous proof, p, € [p—d,p+ 6] forn=0,1,....
» Find the linear Taylor polynomial for g(x) expanded about p.



Proof (2 of 4)

9 = 9(P) +4'(p)x —p) + W(x -p)

2



Proof (2 of 4)

2

9(p) +d'(P)(x — p) + X —p)

o) = p+ TED g

p=
=
I

g”(Z(X))(
2




Proof (2 of 4)

g”(Z(X))(
2

a(p) + g'(p)(x — p) + X — p)?

o) = p+ TED g
)

(()
2(

p=
=
I

9lpn) = p+?2 pn — P)?



Proof (2 of 4)

9(x) = g(/@)+.67’(/0)(X—/D)+W(x—p)2
o) = p+ TED g
glpn) = p+ (2( (5, - p)?

Pry1 — P = W(pn—p)2

where z(p,) lies between p, and p.



Proof (3 of 4)

7 z N
Pri1—p = g(z(p))(pn—p)2
Pt =PI 19"(2(pn))|
P — pI? 2



Proof (3 of 4)

7
V4

prii—p = 2 (z(p"))(pn—p)z

|Pnst — P 19" (z(Pn))

lbon — PP 2

_ /!

im Pt =Pl 197(2(Pn))
n=o0 |pp — p|? oo 2



Proof (3 of 4)

7
V4
Pt — P = W(pn—pf
Pt =PI 19"(2(pn))|
|Pn — pI? 2
_ "
n—oo ‘pnfp|2 n—oo 2
im Post =Pl 19"(P)|
n—oo |Pp — p|? 2

by the Squeeze Theorem.

Conclusion: sequence {p,}7°, is quadratically convergent if
g"(p) # 0 and has higher order convergence if g’ (p) = 0.



Proof (4 of 4)

Recall that Y
19" (2(pn))|
2

Since |g”(x)| < M for x € [p— 6,p+ ¢], then

|Pnit — Pl = lon — pI%.

M 2
Prs1 = Pl < Z|Pn =PI



Developing the Method

» Given that f(x) = 0 has a solution p, define

g(x) = x — o(x) f(x).



Developing the Method

» Given that f(x) = 0 has a solution p, define

g(x) = x — o(x) f(x).

> g has a fixed point at p.



Developing the Method

» Given that f(x) = 0 has a solution p, define

g(x) = x — o(x) f(x).

> g has a fixed point at p.
» We want to choose ¢(x) so that g’(p) = 0.

gx) = 1-9¢'(x)f(x)
gp) = 1-¢(p)f(p)
0 = 1—-¢(p)f(p)

]

o(p) = (o)

(x) F(x)

f(x) — o(x) f'(x
f(p) — o(p) f'(p)



Developing the Method
» Given that f(x) = 0 has a solution p, define
g(x) = x — o(x) f(x).

> g has a fixed point at p.
» We want to choose ¢(x) so that g’(p) = 0.

gx) = 1-¢'(x)f(x) = o(x) '(x)
gp) = 1-9¢'(p)f(p)—¢(p)f(p)
0 = 1-9¢(p)f'(p)
’
o(p) = (o)
> Let ¢(x) = f’(1x) and then
_,_ fx) _ _ f(pn-1)
A I ()



Developing the Method
» Given that f(x) = 0 has a solution p, define
g(x) = x — o(x) f(x).

> g has a fixed point at p.
» We want to choose ¢(x) so that g’(p) = 0.

gx) = 1= X)f(x) = ¢(x) '(x)
gp) = 1-¢'(p)f(p)—o(p)f(p)
0 = 1-¢(p)f'(p)
¢(p) = f,(1p)
> Let ¢(x) = f’(1x) and then
(x) H(Pn-1)

I =X"FGy = PP )

Newton’s Method is quadratically convergent!



Multiple Roots

Remark: Newton’s Method will run into trouble if f'(x) = 0.



Multiple Roots

Remark: Newton’s Method will run into trouble if f'(x) = 0.

Definition
A solution p of f(x) = 0 is a root of multiplicity m if f(x) can be
written as

f(x) = (x = p)" q(x)

for x # p and where )!lnp g(x) # 0.

A root of multiplicity 1 is called a simple root.



Determining the Multiplicity

Theorem
Function f € C|a, b] has a simple root at p € (a, b) if and only if
f(p) =0 and f'(p) # 0.

Theorem
Function f € C"[a, b] has a root of multiplicity m at p if and only if

0="f(p)=1"(p)=---=f"N(p)
but f(M(p) # 0.



Example (1 of 2)

Each of the following functions has a root at p = 1. Determine the
multiplicity of this root for each function.

f(x) = x*—4x?+5x—2
gx) = x®*-6x24+11x-6



Example (1 of 2)

Each of the following functions has a root at p = 1. Determine the
multiplicity of this root for each function.

f(x) = x*—4x?+5x—2

gx) = x®*-6x24+11x-6
n || " (x) | f(1) | 9" (x) | g™ (1)
1] 3x2—8x+5 0 3x2 —12x + 11 2
2 6x — 8 -2 6x — 12 -6
3 6 6 6 6




Example (1 of 2)

Each of the following functions has a root at p = 1. Determine the
multiplicity of this root for each function.

f(x) = x*—4x?+5x—2

gx) = x®*-6x24+11x-6
n || f(x) [ Q) | 9" (x) | g™ (1)
1] 3x2—8x+5 0 3x2 —12x + 11 2
2 6x — 8 -2 6x — 12 -6
3 6 6 6 6

Conclusion: f(x) has a root of multiplicity 2 at x = 1 while g(x) has a
root of multiplicity 1.



Example (2 of 2)

Using an initial approximation of py = 0.5 to the root p = 1, use
Newton’s Method to approximate the root with ¢ = 102 for each of
the following functions.

f(x) = x*—4x®4+5x-2
gix) = x*-6x2+11x—-6



Example (2 of 2)

Using an initial approximation of py = 0.5 to the root p = 1, use
Newton’s Method to approximate the root with ¢ = 102 for each of
the following functions.

f(x) = x*—4x®4+5x-2
gix) = x*-6x2+11x—-6
(x) 9(x)
Multiplicity 2 | Multiplicity 1

n pn pn

0 0.5000 0.5000

1 0.7143 0.8261

2 0.8429 0.9677

3 0.9164 0.9985

4 0.9567 1.0000

5 0.9779 1.0000

Remark: Newton’s Method applied to the function with the root of
higher multiplicity converges slower.



Improving Convergence at Roots of High Multiplicity

f(x)

Define ju(x) = 77,5 then
- (x —p)™q(x)
)= a0 + (x- P ()
(x = p)a(x)

mq(x) + (x = p)q'(x)



Improving Convergence at Roots of High Multiplicity

f(x)

Define u(x) = Fi(x)’ then
_ (x —P)"q(x)
/‘(X) - m(x—p)’"—‘q(X)+(X—p)mq'(x)
_ (x = p)a(x)
mq(x) + (x — p)q'(x)
J(x) = m(q(x))* + (x = P)*(q'(x))* = (x = p)*a(x)q" (x)

(mq(x) + (x — p)q'(x))2



Improving Convergence at Roots of High Multiplicity

f(x)

Define u(x) = Fi(x)’ then
_ (x —P)"q(x)
/‘(X) - m(x—p)’"—‘q(X)+(x—p)mq'(x)
_ (x = p)a(x)
mq(x) + (x — p)q'(x)
J(x) = m(q(x))* + (x = P)*(q'(x))* = (x = p)*a(x)q" (x)

(ma(x) + (x = P)q'(x))?
Observe: p(p) = 0 but /(p) # 0.



Improving Convergence at Roots of High Multiplicity

f(x)

Define u(x) = Fi(x)’ then
_ (x —P)"q(x)
/‘(X) - m(x—p)’"—‘q(X)+(x—p)mq'(x)
_ (x = p)a(x)
mq(x) + (x — p)q'(x)
J(x) = m(q(x))* + (x = P)*(q'(x))* = (x = p)*a(x)q" (x)

(ma(x) + (x = P)q'(x))?
Observe: p(p) = 0 but /(p) # 0.

Now use Newton’s Method to approximate a root of 1(x).

B _M: B f(x)f'(x)
9(x) =x ) X T PR - F0)F (x)




Example

Compare the number of iterations required to approximate the root
p = 1 for the function f(x) = x3 — 4x2 + 5x — 2 starting with py = 0.5
using Newton’s Method and the modified Newton’s Method.



Example

Compare the number of iterations required to approximate the root
p = 1 for the function f(x) = x3 — 4x2 + 5x — 2 starting with py = 0.5
using Newton’s Method and the modified Newton’s Method.

Original | Modified
Pn Pn
0.5000 | 0.5000
0.7143 | 1.0526
0.8429 | 1.0015
0.9164 | 1.0000
0.9567 | 1.0000
0.9779 | 1.0000

aRrhwWOND—=OlS




Homework

» Read Section 2.4.
» Exercises: 1,5,7,9



