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Objectives

We wish to investigate and measure the order of convergence of the
iterative root-finding schemes, such as Newton’s Method.



Order of Convergence

Definition
Suppose the sequence {pn}∞n=0 converges to p with pn ̸= p for all n. If
there exist positive constants α and λ for which

lim
n→∞

|pn+1 − p|
|pn − p|α

= λ

then {pn}∞n=0 is said to converge to p of order α with asymptotic
error constant λ.

Remarks:
▶ If α = 1 and λ < 1, the convergence is linear.
▶ If α = 2, the convergence is quadratic.
▶ Larger α generally means “faster” convergence.
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n→∞

|pn+1 − p|
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Example (1 of 3)

Find the order of convergence and asymptotic error constant for the

sequence
{

1
n + 1

}∞

n=0
.

Let pn = 1
n+1 , then pn → 0 = p.

lim
n→∞

∣∣∣ 1
n+2 − 0

∣∣∣∣∣∣ 1
n+1 − 0

∣∣∣1 = lim
n→∞

n + 1
n + 2

= 1

Thus α = 1 and λ = 1.
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Example (2 of 3)

Find the order of convergence and asymptotic error constant for the

sequence
{

1
2n

}∞

n=0
.

Let pn = 1
2n , then pn → 0 = p.

lim
n→∞

∣∣ 1
2n+1 − 0

∣∣∣∣ 1
2n − 0

∣∣α = lim
n→∞

1
2

1
2n(1−α)

=
1
2

if α = 1. The asymptotic error constant is λ = 1/2 which implies this
sequence is linearly convergent.

Note: If α < 1 the limit is 0 (not positive). If α > 1 the sequence
diverges.
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Example (3 of 3)

Find the order of convergence and asymptotic error constant for the
sequence {2−(3/2)n

}∞n=0.

Let pn = 2−(3/2)n
, then pn → 0 = p.

lim
n→∞

∣∣∣2−(3/2)n+1 − 0
∣∣∣∣∣2−(3/2)n − 0

∣∣α = lim
n→∞

2−(3/2)n[3/2−α] = 1

if α = 3/2. The asymptotic error constant is λ = 1.



Example (3 of 3)

Find the order of convergence and asymptotic error constant for the
sequence {2−(3/2)n

}∞n=0.
Let pn = 2−(3/2)n

, then pn → 0 = p.

lim
n→∞

∣∣∣2−(3/2)n+1 − 0
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Comparison of Convergence

Let pn =
1
2n and qn = 2−(3/2)n

, then

n pn qn

0 1.00000 0.50000000
1 0.50000 0.35355300
2 0.25000 0.21022400
3 0.12500 0.09638820
4 0.06250 0.02992510
5 0.03125 0.00517671

Note: pn → 0 and qn → 0 but the qn sequence is converging “faster”.



Convergence of Iterative Techniques

Remark: most of the root-finding techniques we have considered
converge only linearly.

Theorem
Suppose g ∈ C[a,b] and g(x) ∈ [a,b] for all x ∈ [a,b] and g′ ∈ C(a,b)
with

|g′(x)| ≤ k < 1 for all x ∈ (a,b).

If g′(p) ̸= 0 then for any p0 ̸= p in [a,b], the sequence pn = g(pn−1),
n ≥ 1 converges linearly to the unique fixed point p in [a,b].
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Proof (1 of 2)

▶ The Fixed-Point Theorem asserts the sequence converges to the
unique fixed point p.

▶ According to the MVT

pn+1 − p
pn − p

=
g(pn)− g(p)

pn − p
= g′(zn)

pn+1 − p = g′(zn)(pn − p)

where zn lies between p and pn.
▶ Since pn → p as n → ∞, then zn → p by the Squeeze Theorem.



Proof (2 of 2)

Since g′ is continuous

lim
n→∞

g′(zn) = g′
(
lim

n→∞
zn

)
= g′(p).

Therefore

lim
n→∞

|pn+1 − p|
|pn − p|1

= lim
n→∞

|g(pn)− g(p)|
|pn − p|

= lim
n→∞

|g′(zn)|

= |g′(p)| > 0.



Improving Convergence

Remark: we can only have faster than linear convergence when
g′(p) = 0.

Strategy: given an equation f (x) = 0 with an unknown root p in the
interval [a,b], we want to write down an equivalent fixed-point
problem p = g(p) such that g′(p) = 0.
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Useful Result

Theorem
Let p be a solution of x = g(x) and suppose that g′(p) = 0. Suppose
further that g′′ is continuous with |g′′(x)| < M on an open interval I
containing p. Then there exists a δ > 0 such that for
p0 ∈ [p − δ, p + δ], the sequence defined by pn = g(pn−1) for n ≥ 1
converges at least quadratically to p. Moreover, for large values of n,

|pn+1 − pn| <
M
2
|pn − p|2.



Proof (1 of 4)

▶ Choose k ∈ (0,1) and δ > 0 so that
▶ [p − δ, p + δ] ⊆ I,
▶ |g′(x)| ≤ k , and
▶ g′′ is continuous.

▶ As in a previous proof, pn ∈ [p − δ, p + δ] for n = 0,1, . . ..
▶ Find the linear Taylor polynomial for g(x) expanded about p.
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Conclusion: sequence {pn}∞n=0 is quadratically convergent if
g′′(p) ̸= 0 and has higher order convergence if g′′(p) = 0.
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Proof (4 of 4)

Recall that
|pn+1 − p| = |g′′(z(pn))|

2
|pn − p|2.

Since |g′′(x)| < M for x ∈ [p − δ, p + δ], then

|pn+1 − p| < M
2
|pn − p|2.



Developing the Method
▶ Given that f (x) = 0 has a solution p, define

g(x) = x − ϕ(x) f (x).

▶ g has a fixed point at p.
▶ We want to choose ϕ(x) so that g′(p) = 0.

g′(x) = 1 − ϕ′(x) f (x)− ϕ(x) f ′(x)
g′(p) = 1 − ϕ′(p) f (p)− ϕ(p) f ′(p)

0 = 1 − ϕ(p) f ′(p)

ϕ(p) =
1

f ′(p)

▶ Let ϕ(x) =
1

f ′(x)
and then

g(x) = x − f (x)
f ′(x)

=⇒ pn = pn−1 −
f (pn−1)

f ′(pn−1)

Newton’s Method is quadratically convergent!
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Multiple Roots

Remark: Newton’s Method will run into trouble if f ′(x) = 0.

Definition
A solution p of f (x) = 0 is a root of multiplicity m if f (x) can be
written as

f (x) = (x − p)m q(x)

for x ̸= p and where lim
x→p

q(x) ̸= 0.

A root of multiplicity 1 is called a simple root.



Multiple Roots

Remark: Newton’s Method will run into trouble if f ′(x) = 0.

Definition
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Determining the Multiplicity

Theorem
Function f ∈ C[a,b] has a simple root at p ∈ (a,b) if and only if
f (p) = 0 and f ′(p) ̸= 0.

Theorem
Function f ∈ Cm[a,b] has a root of multiplicity m at p if and only if

0 = f (p) = f ′(p) = · · · = f (m−1)(p)

but f (m)(p) ̸= 0.



Example (1 of 2)

Each of the following functions has a root at p = 1. Determine the
multiplicity of this root for each function.

f (x) = x3 − 4x2 + 5x − 2
g(x) = x3 − 6x2 + 11x − 6

n f (n)(x) f (n)(1) g(n)(x) g(n)(1)
1 3x2 − 8x + 5 0 3x2 − 12x + 11 2
2 6x − 8 −2 6x − 12 −6
3 6 6 6 6

Conclusion: f (x) has a root of multiplicity 2 at x = 1 while g(x) has a
root of multiplicity 1.
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Conclusion: f (x) has a root of multiplicity 2 at x = 1 while g(x) has a
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Example (2 of 2)

Using an initial approximation of p0 = 0.5 to the root p = 1, use
Newton’s Method to approximate the root with ϵ = 10−2 for each of
the following functions.

f (x) = x3 − 4x2 + 5x − 2
g(x) = x3 − 6x2 + 11x − 6

f (x) g(x)
Multiplicity 2 Multiplicity 1

n pn pn

0 0.5000 0.5000
1 0.7143 0.8261
2 0.8429 0.9677
3 0.9164 0.9985
4 0.9567 1.0000
5 0.9779 1.0000

Remark: Newton’s Method applied to the function with the root of
higher multiplicity converges slower.
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Improving Convergence at Roots of High Multiplicity

Define µ(x) =
f (x)
f ′(x)

, then

µ(x) =
(x − p)mq(x)

m(x − p)m−1q(x) + (x − p)mq′(x)

=
(x − p)q(x)

mq(x) + (x − p)q′(x)

µ′(x) =
m(q(x))2 + (x − p)2(q′(x))2 − (x − p)2q(x)q′′(x)

(mq(x) + (x − p)q′(x))2

Observe: µ(p) = 0 but µ′(p) ̸= 0.

Now use Newton’s Method to approximate a root of µ(x).

g(x) = x − µ(x)
µ′(x)

= x − f (x)f ′(x)
[f ′(x)]2 − f (x)f ′′(x)
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Example

Compare the number of iterations required to approximate the root
p = 1 for the function f (x) = x3 − 4x2 + 5x − 2 starting with p0 = 0.5
using Newton’s Method and the modified Newton’s Method.

Original Modified
n pn pn

0 0.5000 0.5000
1 0.7143 1.0526
2 0.8429 1.0015
3 0.9164 1.0000
4 0.9567 1.0000
5 0.9779 1.0000
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Homework

▶ Read Section 2.4.
▶ Exercises: 1, 5, 7, 9


