Error Analysis for Iterative Methods MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Objectives

We wish to investigate and measure the order of convergence of the iterative root-finding schemes, such as Newton's Method.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Order of Convergence

Definition

Suppose the sequence $\{p_n\}_{n=0}^{\infty}$ converges to *p* with $p_n \neq p$ for all *n*. If there exist positive constants α and λ for which

$$\lim_{n \to \infty} \frac{|\boldsymbol{p}_{n+1} - \boldsymbol{p}|}{|\boldsymbol{p}_n - \boldsymbol{p}|^{\alpha}} = \lambda$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

then $\{p_n\}_{n=0}^{\infty}$ is said to converge to *p* of order α with asymptotic error constant λ .

Order of Convergence

Definition

Suppose the sequence $\{p_n\}_{n=0}^{\infty}$ converges to *p* with $p_n \neq p$ for all *n*. If there exist positive constants α and λ for which

$$\lim_{n\to\infty}\frac{|\boldsymbol{p}_{n+1}-\boldsymbol{p}|}{|\boldsymbol{p}_n-\boldsymbol{p}|^{\alpha}}=\lambda$$

then $\{p_n\}_{n=0}^{\infty}$ is said to converge to *p* of order α with asymptotic error constant λ .

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Remarks:

- If $\alpha = 1$ and $\lambda < 1$, the convergence is **linear**.
- If $\alpha = 2$, the convergence is **quadratic**.
- Larger α generally means "faster" convergence.

Example (1 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{\frac{1}{n+1}\right\}_{n=0}^{\infty}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example (1 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{\frac{1}{n+1}\right\}_{n=0}^{\infty}$. Let $p_n = \frac{1}{n+1}$, then $p_n \to 0 = p$.

$$\lim_{n \to \infty} \frac{\left| \frac{1}{n+2} - 0 \right|}{\left| \frac{1}{n+1} - 0 \right|^1} = \lim_{n \to \infty} \frac{n+1}{n+2} = 1$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Thus $\alpha = 1$ and $\lambda = 1$.

Example (2 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{\frac{1}{2^n}\right\}_{n=0}^{\infty}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example (2 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{\frac{1}{2^n}\right\}_{n=0}^{\infty}$. Let $p_n = \frac{1}{2^n}$, then $p_n \to 0 = p$. $\lim_{n \to \infty} \frac{\left|\frac{1}{2^{n+1}} - 0\right|}{\left|\frac{1}{2^n} - 0\right|^{\alpha}} = \lim_{n \to \infty} \frac{1}{2} \frac{1}{2^{n(1-\alpha)}} = \frac{1}{2}$

if $\alpha = 1$. The asymptotic error constant is $\lambda = 1/2$ which implies this sequence is linearly convergent.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Example (2 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\left\{\frac{1}{2^n}\right\}_{n=0}^{\infty}$. Let $p_n = \frac{1}{2^n}$, then $p_n \to 0 = p$. $\lim_{n \to \infty} \frac{\left|\frac{1}{2^{n+1}} - 0\right|}{\left|\frac{1}{2^n} - 0\right|^{\alpha}} = \lim_{n \to \infty} \frac{1}{2} \frac{1}{2^{n(1-\alpha)}} = \frac{1}{2}$

if $\alpha = 1$. The asymptotic error constant is $\lambda = 1/2$ which implies this sequence is linearly convergent.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Note: If $\alpha < 1$ the limit is 0 (not positive). If $\alpha > 1$ the sequence diverges.

Find the order of convergence and asymptotic error constant for the sequence $\{2^{-(3/2)^n}\}_{n=0}^\infty.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example (3 of 3)

Find the order of convergence and asymptotic error constant for the sequence $\{2^{-(3/2)^n}\}_{n=0}^{\infty}$. Let $p_n = 2^{-(3/2)^n}$, then $p_n \to 0 = p$.

$$\lim_{n \to \infty} \frac{\left| 2^{-(3/2)^{n+1}} - 0 \right|}{\left| 2^{-(3/2)^n} - 0 \right|^{\alpha}} = \lim_{n \to \infty} 2^{-(3/2)^n [3/2 - \alpha]} = 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

if $\alpha = 3/2$. The asymptotic error constant is $\lambda = 1$.

Comparison of Convergence

Let
$$p_n = \frac{1}{2^n}$$
 and $q_n = 2^{-(3/2)^n}$, then

$$\frac{n \quad p_n \qquad q_n}{0 \quad 1.00000 \quad 0.50000000} \\
1 \quad 0.50000 \quad 0.35355300 \\
2 \quad 0.25000 \quad 0.21022400 \\
3 \quad 0.12500 \quad 0.09638820 \\
4 \quad 0.06250 \quad 0.02992510 \\
5 \quad 0.03125 \quad 0.00517671$$

Note: $p_n \rightarrow 0$ and $q_n \rightarrow 0$ but the q_n sequence is converging "faster".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Convergence of Iterative Techniques

Remark: most of the root-finding techniques we have considered converge only linearly.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Remark: most of the root-finding techniques we have considered converge only linearly.

Theorem

Suppose $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$ and $g' \in C(a, b)$ with

$$|g'(x)| \le k < 1$$
 for all $x \in (a, b)$.

If $g'(p) \neq 0$ then for any $p_0 \neq p$ in [a, b], the sequence $p_n = g(p_{n-1})$, $n \geq 1$ converges linearly to the unique fixed point p in [a, b].

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof (1 of 2)

- The Fixed-Point Theorem asserts the sequence converges to the unique fixed point p.
- According to the MVT

$$\begin{array}{rcl} \displaystyle \frac{p_{n+1}-p}{p_n-p} & = & \displaystyle \frac{g(p_n)-g(p)}{p_n-p} \\ & = & g'(z_n) \\ p_{n+1}-p & = & g'(z_n)(p_n-p) \end{array}$$

where z_n lies between p and p_n .

Since $p_n \rightarrow p$ as $n \rightarrow \infty$, then $z_n \rightarrow p$ by the Squeeze Theorem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Since g' is continuous

$$\lim_{n\to\infty}g'(z_n)=g'\left(\lim_{n\to\infty}z_n\right)=g'(p).$$

Therefore

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^1} = \lim_{n \to \infty} \frac{|g(p_n) - g(p)|}{|p_n - p|}$$
$$= \lim_{n \to \infty} |g'(z_n)|$$
$$= |g'(p)| > 0.$$

Improving Convergence

Remark: we can only have faster than linear convergence when g'(p) = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Remark: we can only have faster than linear convergence when g'(p) = 0.

Strategy: given an equation f(x) = 0 with an unknown root p in the interval [a, b], we want to write down an equivalent fixed-point problem p = g(p) such that g'(p) = 0.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Useful Result

Theorem

Let p be a solution of x = g(x) and suppose that g'(p) = 0. Suppose further that g'' is continuous with |g''(x)| < M on an open interval I containing p. Then there exists a $\delta > 0$ such that for $p_0 \in [p - \delta, p + \delta]$, the sequence defined by $p_n = g(p_{n-1})$ for $n \ge 1$ converges at least quadratically to p. Moreover, for large values of n,

$$|p_{n+1}-p_n| < \frac{M}{2}|p_n-p|^2$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• Choose $k \in (0, 1)$ and $\delta > 0$ so that

$$[p - \delta, p + \delta] \subseteq I,$$

$$|g'(x)| \leq k$$
, and

▶ g'' is continuous.

• Choose $k \in (0, 1)$ and $\delta > 0$ so that

$$\triangleright \quad [\boldsymbol{p} - \delta, \boldsymbol{p} + \delta] \subseteq \boldsymbol{I},$$

- ► $|g'(x)| \leq k$, and
- ▶ g'' is continuous.

▶ As in a previous proof, $p_n \in [p - \delta, p + \delta]$ for n = 0, 1, ...

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Choose $k \in (0, 1)$ and $\delta > 0$ so that
 - $\blacktriangleright [p-\delta, p+\delta] \subseteq I,$
 - $|g'(x)| \leq k$, and
 - ▶ g'' is continuous.
- ▶ As in a previous proof, $p_n \in [p \delta, p + \delta]$ for n = 0, 1, ...
- Find the linear Taylor polynomial for g(x) expanded about p.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$g(x) = g(p) + g'(p)(x-p) + \frac{g''(z(x))}{2}(x-p)^2$$

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

$$g(x) = g(p) + g'(p)(x-p) + \frac{g''(z(x))}{2}(x-p)^2$$

$$g(x) = p + \frac{g''(z(x))}{2}(x-p)^2$$

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

$$g(x) = g(p) + g'(p)(x-p) + \frac{g''(z(x))}{2}(x-p)^2$$

$$g(x) = p + \frac{g''(z(x))}{2}(x-p)^2$$

$$g(p_n) = p + \frac{g''(z(p_n))}{2}(p_n-p)^2$$

▲□ → ▲圖 → ▲ 圖 → ▲ 圖 → 의 ۹ ()

$$g(x) = g(p) + g'(p)(x - p) + \frac{g''(z(x))}{2}(x - p)^2$$

$$g(x) = p + \frac{g''(z(x))}{2}(x - p)^2$$

$$g(p_n) = p + \frac{g''(z(p_n))}{2}(p_n - p)^2$$

$$p_{n+1} - p = \frac{g''(z(p_n))}{2}(p_n - p)^2$$

where $z(p_n)$ lies between p_n and p.

$$egin{array}{rcl} p_{n+1}-p&=&rac{g''(z(p_n))}{2}(p_n-p)^2\ &rac{|p_{n+1}-p|}{|p_n-p|^2}&=&rac{|g''(z(p_n))|}{2} \end{array}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

$$p_{n+1} - p = \frac{g''(z(p_n))}{2}(p_n - p)^2$$
$$\frac{|p_{n+1} - p|}{|p_n - p|^2} = \frac{|g''(z(p_n))|}{2}$$
$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} = \lim_{n \to \infty} \frac{|g''(z(p_n))|}{2}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

$$\begin{array}{lll} p_{n+1} - p & = & \displaystyle \frac{g''(z(p_n))}{2}(p_n - p)^2 \\ & \displaystyle \frac{|p_{n+1} - p|}{|p_n - p|^2} & = & \displaystyle \frac{|g''(z(p_n))|}{2} \\ & \displaystyle \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} & = & \displaystyle \lim_{n \to \infty} \frac{|g''(z(p_n))|}{2} \\ & \displaystyle \lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^2} & = & \displaystyle \frac{|g''(p)|}{2} \end{array}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

by the Squeeze Theorem.

Conclusion: sequence $\{p_n\}_{n=0}^{\infty}$ is quadratically convergent if $g''(p) \neq 0$ and has higher order convergence if g''(p) = 0.

Recall that $|p_{n+1} - p| = \frac{|g''(z(p_n))|}{2}|p_n - p|^2.$ Since |g''(x)| < M for $x \in [p - \delta, p + \delta]$, then $|p_{n+1} - p| < \frac{M}{2}|p_n - p|^2.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Given that f(x) = 0 has a solution *p*, define

$$g(x) = x - \phi(x) f(x).$$

• Given that f(x) = 0 has a solution p, define

$$g(x) = x - \phi(x) f(x).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▶ g has a fixed point at p.

• Given that f(x) = 0 has a solution p, define

$$g(x) = x - \phi(x) f(x).$$

▶ g has a fixed point at p.

• We want to choose $\phi(x)$ so that g'(p) = 0.

$$\begin{array}{rcl} g'(x) &=& 1 - \phi'(x) \, f(x) - \phi(x) \, f'(x) \\ g'(p) &=& 1 - \phi'(p) \, f(p) - \phi(p) \, f'(p) \\ 0 &=& 1 - \phi(p) \, f'(p) \\ \phi(p) &=& \frac{1}{f'(p)} \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Given that f(x) = 0 has a solution p, define

$$g(x) = x - \phi(x) f(x).$$

▶ g has a fixed point at p.

• We want to choose $\phi(x)$ so that g'(p) = 0.

$$\begin{array}{rcl} g'(x) &=& 1 - \phi'(x) \, f(x) - \phi(x) \, f'(x) \\ g'(p) &=& 1 - \phi'(p) \, f(p) - \phi(p) \, f'(p) \\ 0 &=& 1 - \phi(p) \, f'(p) \\ \phi(p) &=& \frac{1}{f'(p)} \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Let
$$\phi(x) = \frac{1}{f'(x)}$$
 and then
 $g(x) = x - \frac{f(x)}{f'(x)} \implies p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$

• Given that f(x) = 0 has a solution p, define

$$g(x) = x - \phi(x) f(x).$$

▶ g has a fixed point at p.

• We want to choose $\phi(x)$ so that g'(p) = 0.

$$\begin{array}{rcl} g'(x) &=& 1 - \phi'(x) \, f(x) - \phi(x) \, f'(x) \\ g'(p) &=& 1 - \phi'(p) \, f(p) - \phi(p) \, f'(p) \\ 0 &=& 1 - \phi(p) \, f'(p) \\ \phi(p) &=& \frac{1}{f'(p)} \end{array}$$

• Let
$$\phi(x) = \frac{1}{f'(x)}$$
 and then
 $g(x) = x - \frac{f(x)}{f'(x)} \implies p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$

Newton's Method is quadratically convergent!

Multiple Roots

Remark: Newton's Method will run into trouble if f'(x) = 0.

Multiple Roots

Remark: Newton's Method will run into trouble if f'(x) = 0.

Definition

A solution p of f(x) = 0 is a **root of multiplicity** m if f(x) can be written as

$$f(x)=(x-p)^m q(x)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for $x \neq p$ and where $\lim_{x \to p} q(x) \neq 0$.

A root of multiplicity 1 is called a **simple root**.

Determining the Multiplicity

Theorem Function $f \in C[a, b]$ has a simple root at $p \in (a, b)$ if and only if f(p) = 0 and $f'(p) \neq 0$.

Theorem

Function $f \in C^m[a, b]$ has a root of multiplicity m at p if and only if

$$0 = f(p) = f'(p) = \cdots = f^{(m-1)}(p)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

but $f^{(m)}(p) \neq 0$.

Example (1 of 2)

Each of the following functions has a root at p = 1. Determine the multiplicity of this root for each function.

$$f(x) = x^3 - 4x^2 + 5x - 2$$

$$g(x) = x^3 - 6x^2 + 11x - 6$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example (1 of 2)

Each of the following functions has a root at p = 1. Determine the multiplicity of this root for each function.

$$f(x) = x^{3} - 4x^{2} + 5x - 2$$

$$g(x) = x^{3} - 6x^{2} + 11x - 6$$

$$\frac{n | f^{(n)}(x) | f^{(n)}(1) | g^{(n)}(x) | g^{(n)}(1)}{1 | 3x^{2} - 8x + 5 | 0 | 3x^{2} - 12x + 11 | 2}$$

$$\frac{2}{3} | 6x - 8 | -2 | 6x - 12 | -6$$

$$\frac{3}{3} | 6 | 6 | 6 | 6 | 6$$

Example (1 of 2)

Each of the following functions has a root at p = 1. Determine the multiplicity of this root for each function.

$$f(x) = x^{3} - 4x^{2} + 5x - 2$$

$$g(x) = x^{3} - 6x^{2} + 11x - 6$$

$$\frac{n | f^{(n)}(x) | f^{(n)}(1) | g^{(n)}(x) | g^{(n)}(1)}{1 | 3x^{2} - 8x + 5 | 0 | 3x^{2} - 12x + 11 | 2}$$

$$\frac{6x - 8}{3 | 6 | 6 | 6 | 6 | 6$$

Conclusion: f(x) has a root of multiplicity 2 at x = 1 while g(x) has a root of multiplicity 1.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example (2 of 2)

Using an initial approximation of $p_0 = 0.5$ to the root p = 1, use Newton's Method to approximate the root with $\epsilon = 10^{-2}$ for each of the following functions.

$$f(x) = x^3 - 4x^2 + 5x - 2$$

$$g(x) = x^3 - 6x^2 + 11x - 6$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example (2 of 2)

Using an initial approximation of $p_0 = 0.5$ to the root p = 1, use Newton's Method to approximate the root with $\epsilon = 10^{-2}$ for each of the following functions.

$f(x) = x^3 - 4x$		$x^{2} + 5x - 2$		
$g(x) = x^3 - 6x^2 + 11x - 6$				
	f(x)	q(x)		
	Multiplicity 2	Multiplicity 1		
п	p_n	pn		
0	0.5000	0.5000		
1	0.7143	0.8261		
2	0.8429	0.9677		
3	0.9164	0.9985		
4	0.9567	1.0000		
5	0.9779	1.0000		

Remark: Newton's Method applied to the function with the root of higher multiplicity converges slower.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Define
$$\mu(x) = \frac{f(x)}{f'(x)}$$
, then

$$\mu(x) = \frac{(x-p)^m q(x)}{m(x-p)^{m-1}q(x) + (x-p)^m q'(x)}$$

$$= \frac{(x-p)q(x)}{mq(x) + (x-p)q'(x)}$$

Define
$$\mu(x) = \frac{f(x)}{f'(x)}$$
, then

$$\mu(x) = \frac{(x-p)^m q(x)}{m(x-p)^{m-1}q(x) + (x-p)^m q'(x)}$$

$$= \frac{(x-p)q(x)}{mq(x) + (x-p)q'(x)}$$

$$\mu'(x) = \frac{m(q(x))^2 + (x-p)^2(q'(x))^2 - (x-p)^2q(x)q''(x)}{(mq(x) + (x-p)q'(x))^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Define
$$\mu(x) = \frac{f(x)}{f'(x)}$$
, then

$$\mu(x) = \frac{(x-p)^m q(x)}{m(x-p)^{m-1}q(x) + (x-p)^m q'(x)}$$

$$= \frac{(x-p)q(x)}{mq(x) + (x-p)q'(x)}$$

$$\mu'(x) = \frac{m(q(x))^2 + (x-p)^2(q'(x))^2 - (x-p)^2q(x)q''(x)}{(mq(x) + (x-p)q'(x))^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Observe: $\mu(\rho) = 0$ but $\mu'(\rho) \neq 0$.

Define
$$\mu(x) = \frac{f(x)}{f'(x)}$$
, then

$$\mu(x) = \frac{(x-p)^m q(x)}{m(x-p)^{m-1}q(x) + (x-p)^m q'(x)}$$

$$= \frac{(x-p)q(x)}{mq(x) + (x-p)q'(x)}$$

$$\mu'(x) = \frac{m(q(x))^2 + (x-p)^2(q'(x))^2 - (x-p)^2q(x)q''(x)}{(mq(x) + (x-p)q'(x))^2}$$

Observe: $\mu(p) = 0$ but $\mu'(p) \neq 0$.

Now use Newton's Method to approximate a root of $\mu(x)$.

$$g(x) = x - \frac{\mu(x)}{\mu'(x)} = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

Example

Compare the number of iterations required to approximate the root p = 1 for the function $f(x) = x^3 - 4x^2 + 5x - 2$ starting with $p_0 = 0.5$ using Newton's Method and the modified Newton's Method.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example

Compare the number of iterations required to approximate the root p = 1 for the function $f(x) = x^3 - 4x^2 + 5x - 2$ starting with $p_0 = 0.5$ using Newton's Method and the modified Newton's Method.

	Original	Modified
n	p_n	p_n
0	0.5000	0.5000
1	0.7143	1.0526
2	0.8429	1.0015
3	0.9164	1.0000
4	0.9567	1.0000
5	0.9779	1.0000

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Homework

- Read Section 2.4.
- Exercises: 1, 5, 7, 9

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○