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Objectives

In this lesson we will learn to
▶ solve linear systems using Jacobi’s method,
▶ solve linear systems using the Gauss-Seidel method, and
▶ solve linear systems using general iterative methods.



Background

▶ For small linear systems direct methods are often as efficient (or
even more efficient) than the iterative methods to be discussed
today.

▶ For large linear systems particularly those with sparse matrix
representations (matrices with many zero entries), the iterative
methods can be more efficient that the direct methods.

▶ Sparse linear systems are often found in applications such as
ordinary and partial differential equarions and circuit analysis.



Initial Approximation

Consider the linear system A x = b where A is an n × n matrix and
b ∈ Rn.

Given an initial approximation x(0 to the solution of the linear system
x, iterative techniques generate a sequence of vectors {x(k)}∞k=0
which converge to the solution x.



Jacobi’s Method

Given the linear system A x = b, if aii ̸= 0 solve the i th equation of the
system for xi .

bi = ai1x1 + · · ·+ aiixi + · · ·+ ainxn

xi =
bi

aii
−

n∑
j=1,j ̸=i

aijxj

aii

We will have n equations of this form (1 ≤ i ≤ n).

Given x(k) then

x (k+1)
i =

bi

aii
−

n∑
j=1,j ̸=i

aijx
(k)
j

aii

for 1 ≤ i ≤ n. The process can be repeated until
∥x(k) − x(k−1)∥∞

∥x(k)∥∞
< ϵ.
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Given x(k) then
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Example

Use Jacobi’s method to approximate the solution to the following
linear system. Use x(0) = 0 and let ϵ = 10−3.

−2x1 + x2 +
1
2

x3 = 4

x1 − 2x2 −
1
2

x3 = −4

x2 + 2x3 = 0

For purposes of comparison, the exact solution is x1
x2
x3

 =

 −16/11
16/11
−8/11

 ≈

 −1.454545
1.454545

−0.727273

 .



Solution

x1 = −2 +
1
2

x2 +
1
4

x3

x2 = 2 +
1
2

x1 −
1
4

x3

x3 = −1
2

x2

k x (k)
1 x (k)

2 x (k)
3

0 0.0000 0.0000 0.0000
1 −2.0000 2.0000 0.0000
2 −1.0000 1.0000 −1.0000
3 −1.2500 1.2500 −0.8750
4 −1.5938 1.5938 −0.6250
...

...
...

...
19 −1.4552 1.4552 −0.7268
20 −1.4541 1.4541 −0.7276
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Matrix Notation for Jacobi’s Method (1 of 2)

Matrix A can be decomposed as A = D − L − U where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 D =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann



L =


0 0 · · · 0

−a21 0 · · · 0
...

...
. . .

...
−an1 −an2 · · · 0

 U =


0 −a12 · · · −a1n
0 0 · · · −a2n
...

...
. . .

...
0 0 · · · 0

 .



Matrix Notation for Jacobi’s Method (2 of 2)

A x = b
(D − L − U)x = b

D x = (L + U)x + b
x = D−1(L + U)x + D−1b

assuming aii ̸= 0 for 1 ≤ i ≤ n.

▶ Define Tj = D−1(L + U) and cj = D−1b.
▶ The Jacobi method can be expressed in matrix notation as

x(k) = Tj x(k−1) + cj .
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1
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1
2
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0

.



Example

Express the following linear system in the Jacobi matrix notation.

−2x1 + x2 +
1
2

x3 = 4

x1 − 2x2 −
1
2

x3 = −4

x2 + 2x3 = 0

Solution

Let A =

 −2 1 1/2
1 −2 −1/2
0 1 2

 and b =

 4
−4

0

.



Solution

D =

 −2 0 0
0 −2 0
0 0 2


L + U =

 0 −1 −1/2
−1 0 1/2

0 −1 0


Tj = D−1(L + U) =

 0 1/2 1/4
1/2 0 −1/4

0 −1/2 0


cj = D−1b =

 −2
2
0



 x (k)
1

x (k)
2

x (k)
3

 =

 0 1/2 1/4
1/2 0 −1/4

0 −1/2 0


 x (k−1)

1

x (k−1)
2

x (k−1)
3

+

 −2
2
0





Solution

D =

 −2 0 0
0 −2 0
0 0 2


L + U =

 0 −1 −1/2
−1 0 1/2

0 −1 0


Tj = D−1(L + U) =

 0 1/2 1/4
1/2 0 −1/4

0 −1/2 0


cj = D−1b =

 −2
2
0


 x (k)

1

x (k)
2

x (k)
3

 =

 0 1/2 1/4
1/2 0 −1/4

0 −1/2 0


 x (k−1)

1

x (k−1)
2

x (k−1)
3

+

 −2
2
0





Improving the Jacobi Method

Recall that in the Jacobi method,

x (k)
i =

1
aii

bi −
n∑

j=1,j ̸=i

aijx
(k−1)
j

 .

▶ As designed all the components of x(k−1) are used to calculate
x (k)

i .

▶ When i > 1 the components x (k)
j for 1 ≤ j < i have already been

calculated and should be more accurate than the components
x (k−1)

j for 1 ≤ j < i .

▶ We can modify the Jacobi method to use x (k)
j for 1 ≤ j < i in

place of x (k−1)
j to improve the convergence of the algorithm. This

modification is known as the Gauss-Seidel iterative technique.



Gauss-Seidel Method

x (k)
i =

1
aii

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

 .



Example

Use the Gauss-Seidel method to approximate the solution to the
following linear system. Use x(0) = 0 and let ϵ = 10−3.

−2x1 + x2 +
1
2

x3 = 4

x1 − 2x2 −
1
2

x3 = −4

x2 + 2x3 = 0



Solution

x (k)
1 = −2 +

1
2

x (k−1)
2 +

1
4

x (k−1)
3

x (k)
2 = 2 +

1
2

x (k)
1 − 1

4
x (k−1)

3

x (k)
3 = −1

2
x (k)

2

k x (k)
1 x (k)

2 x (k)
3

0 0.0000 0.0000 0.0000
1 −2.0000 1.0000 −0.5000
2 −1.6250 1.3125 −0.6523
3 −1.5078 1.4102 −0.7051
4 −1.4712 1.4407 −0.7203
5 −1.4598 1.4502 −0.7251
6 −1.4562 1.4532 −0.7266
7 −1.4551 1.4541 −0.7271



Solution

x (k)
1 = −2 +

1
2

x (k−1)
2 +

1
4

x (k−1)
3

x (k)
2 = 2 +

1
2

x (k)
1 − 1

4
x (k−1)

3

x (k)
3 = −1

2
x (k)

2

k x (k)
1 x (k)

2 x (k)
3

0 0.0000 0.0000 0.0000
1 −2.0000 1.0000 −0.5000
2 −1.6250 1.3125 −0.6523
3 −1.5078 1.4102 −0.7051
4 −1.4712 1.4407 −0.7203
5 −1.4598 1.4502 −0.7251
6 −1.4562 1.4532 −0.7266
7 −1.4551 1.4541 −0.7271



Gauss-Seidel Method in Matrix Form (1 of 2)

x (k)
i =

1
aii

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j


aiix

(k)
i = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

aiix
(k)
i +

i−1∑
j=1

aijx
(k)
j = bi −

n∑
j=i+1

aijx
(k−1)
j



Gauss-Seidel Method in Matrix Form (2 of 2)
Since for i = 1, 2, . . . , n,

aiix
(k)
i +

i−1∑
j=1

aijx
(k)
j = bi −

n∑
j=i+1

aijx
(k−1)
j ,

we can express the linear system as follows:

a11x (k)
1 = b1 − a12x (k−1)

2 − a13x (k−1)
3 − · · · − a1nx (k−1)

n

a21x (k)
1 + a22x (k)

2 = b2 − a23x (k−1)
2 − a24x (k−1)

3 − · · · − a2nx (k−1)
n

...
an1x (k)

1 + an2x (k)
2 + · · ·+ annx (k)

n = bn

This is equivalent to the matrix form

(D − L)x(k) = b + Ux(k−1)

x(k) = (D − L)−1b + (D − L)−1U x(k−1)

x(k) = cg + Tgx(k−1).



Example

Express the following linear system in the Gauss-Seidel matrix
notation.

−2x1 + x2 +
1
2

x3 = 4

x1 − 2x2 −
1
2

x3 = −4

x2 + 2x3 = 0

Solution

Let A =

 −2 1 1/2
1 −2 −1/2
0 1 2

 and b =

 4
−4

0

.



Example

Express the following linear system in the Gauss-Seidel matrix
notation.

−2x1 + x2 +
1
2

x3 = 4

x1 − 2x2 −
1
2

x3 = −4

x2 + 2x3 = 0

Solution

Let A =

 −2 1 1/2
1 −2 −1/2
0 1 2

 and b =

 4
−4

0

.



Solution

D − L =

 −2 0 0
1 −2 0
0 1 2


(D − L)−1 =

 −1/2 0 0
−1/4 −1/2 0

1/8 1/4 1/2


Tg = (D − L)−1U =

 0 1/2 1/4
0 1/4 −1/8
0 −1/8 1/16


cg = (D − L)−1b =

 −2
1

−1/2



 x (k)
1

x (k)
2

x (k)
3

 =

 0 1/2 1/4
0 1/4 −1/8
0 −1/8 1/16


 x (k−1)

1

x (k−1)
2

x (k−1)
3

+

 −2
1

−1/2





Solution

D − L =

 −2 0 0
1 −2 0
0 1 2


(D − L)−1 =

 −1/2 0 0
−1/4 −1/2 0

1/8 1/4 1/2


Tg = (D − L)−1U =

 0 1/2 1/4
0 1/4 −1/8
0 −1/8 1/16


cg = (D − L)−1b =

 −2
1

−1/2


 x (k)

1

x (k)
2

x (k)
3

 =

 0 1/2 1/4
0 1/4 −1/8
0 −1/8 1/16


 x (k−1)

1

x (k−1)
2

x (k−1)
3

+

 −2
1

−1/2





General Iteration Methods

We have seen that we can express an iterative method for the
solution of a linear system in the form:

x(k) = T x(k−1) + c

for k = 1,2, . . . where x(0) is arbitrary.

We must now establish conditions under which this iterative method
will converge to the unique solution of the system A x = b.
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We have seen that we can express an iterative method for the
solution of a linear system in the form:

x(k) = T x(k−1) + c

for k = 1,2, . . . where x(0) is arbitrary.
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Important Lemma

Lemma
If ρ(T ) < 1 then (I − T )−1 exists and

(I − T )−1 = I + T + T 2 + · · · =
∞∑
j=0

T j .



Proof (1 of 2)

T x = λx
x − T x = x − λx
(I − T )x = (1 − λ)x

▶ Thus λ is an eigenvalue of T if and only if 1 − λ is an eigenvalue
of I − T .

▶ If ρ(T ) < 1 then for any eigenvalue λ of T , |λ| < 1, therefore
λ ̸= 1.

▶ Hence 1 − 1 = 0 cannot be an eigenvalue of I − T which implies
I − T is nonsingular.



Proof (2 of 2)

Define Sm = I + T + T 2 + · · ·+ T m for m = 1,2, . . ..

(I − T )Sm = (I + T + T 2 + · · ·+ T m)− (T + T 2 + · · ·+ T m+1)

= I − T m+1

lim
m→∞

(I − T )Sm = lim
m→∞

(I − T m+1)

(I − T ) lim
m→∞

Sm = I (since T is convergent)

Consequently (I − T )−1 =
∑∞

j=0 T j .



Convergence of Iterative Methods

Theorem
For any x(0) ∈ Rn the sequence {x(k)}∞k=0 defined by

x(k) = T x(k−1) + c for k = 1,2, . . .

converges to the unique solution of x = T x+ c if and only if ρ(T ) < 1.



Proof (1 of 4)

Suppose ρ(T ) < 1, then by assumption

x(k) = T x(k−1) + c
= T (T x(k−2) + c) + c
= T 2x(k−2) + (I + T )c
...

x(k) = T k x(0) + (I + T + · · ·T k−1)c

lim
k→∞

x(k) = lim
k→∞

[
T k x(0) + (I + T + · · ·T k−1)c

]
=

(
lim

k→∞
T k

)
x(0) +

 ∞∑
j=0

T j

c

= 0 + (I − T )−1c (since T is convergent)
x = (I − T )−1c.



Proof (2 of 4)

So far we know the sequence {x(k)}∞k=0 converges to

x = (I − T )−1c

(I − T )x = c
x = T x + c.

Hence x is a solution to the linear system.



Proof (2 of 4)

So far we know the sequence {x(k)}∞k=0 converges to

x = (I − T )−1c
(I − T )x = c

x = T x + c.

Hence x is a solution to the linear system.



Proof (3 of 4)

▶ To prove the converse, let z be any vector in Rn.
▶ Let x be the unique solution to the linear system x = T x + c.

▶ Define x(0 = x − z and for k ≥ 1 define x(k) = T x(k−1) + c.
▶ By assumption lim

k→∞
x(k) = x.
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▶ Let x be the unique solution to the linear system x = T x + c.
▶ Define x(0 = x − z and for k ≥ 1 define x(k) = T x(k−1) + c.

▶ By assumption lim
k→∞

x(k) = x.



Proof (3 of 4)

▶ To prove the converse, let z be any vector in Rn.
▶ Let x be the unique solution to the linear system x = T x + c.
▶ Define x(0 = x − z and for k ≥ 1 define x(k) = T x(k−1) + c.
▶ By assumption lim

k→∞
x(k) = x.



Proof (4 of 4)

x − x(k) = (T x + c)− (T x(k−1) + x)
= T (x − x(k−1))

= T
(

T (x − x(k−2))
)

...
x − x(k) = T k (x − x(0)) = T k z

lim
k→∞

(x − x(k)) = lim
k→∞

T k z

0 = lim
k→∞

T k z

Since z is arbitrary then T is a convergent matrix and hence ρ(T ) < 1.



Proof (4 of 4)

x − x(k) = (T x + c)− (T x(k−1) + x)
= T (x − x(k−1))

= T
(

T (x − x(k−2))
)

...
x − x(k) = T k (x − x(0)) = T k z

lim
k→∞

(x − x(k)) = lim
k→∞

T k z

0 = lim
k→∞

T k z

Since z is arbitrary then T is a convergent matrix and hence ρ(T ) < 1.



Error Bounds

Corollary
If ∥T∥ < 1 for any natural matrix norm and c is a fixed vector, then the
sequence {x(k)}∞k=0 defined by x(k) = T x(k−1) + c converges for any
x(0) to a vector x ∈ Rn with x = T x + c with the following error
bounds.

1. ∥x − x(k)∥ ≤ ∥T∥k∥x(0) − x∥

2. ∥x − x(k)∥ ≤ ∥T∥k

1 − ∥T∥
∥x(1) − x(0)∥

Remark: if we can show that ρ(Tj) < 1 and ρ(Tg) < 1 then the Jacobi
and Gauss-Seidel methods will always converge to the unique
solution of the linear system.



Error Bounds

Corollary
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2. ∥x − x(k)∥ ≤ ∥T∥k

1 − ∥T∥
∥x(1) − x(0)∥

Remark: if we can show that ρ(Tj) < 1 and ρ(Tg) < 1 then the Jacobi
and Gauss-Seidel methods will always converge to the unique
solution of the linear system.



Diagonal Dominance

Theorem
If matrix A is strictly diagonally dominant, then for any choice of x(0),
both the Jacobi and Gauss-Seidel methods produce sequences
{x(k)}∞k=0 that converge to the unique solution of A x = b.



Stein-Rosenberg Theorem

Theorem (Stein-Rosenberg)
If aij ≤ 0 for each i ̸= j and aii > 0 for i = 1,2, . . . ,n then exactly one
of the following statements is true.

1. 0 ≤ ρ(Tg) < ρ(Tj) < 1
2. 0 = ρ(Tg) = ρ(Tj)

3. 1 < ρ(Tj) < ρ(Tg)

4. 1 = ρ(Tg) < ρ(Tj)



Homework

▶ Read Section 7.3.
▶ Exercises: 1ac, 3ac, 5ac, 7ac


