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Objectives

In this lesson we will learn to
» solve linear systems using Jacobi’s method,
» solve linear systems using the Gauss-Seidel method, and
» solve linear systems using general iterative methods.



Background

» For small linear systems direct methods are often as efficient (or
even more efficient) than the iterative methods to be discussed
today.

» For large linear systems particularly those with sparse matrix
representations (matrices with many zero entries), the iterative
methods can be more efficient that the direct methods.

» Sparse linear systems are often found in applications such as
ordinary and partial differential equarions and circuit analysis.



Initial Approximation

Consider the linear system Ax = b where A is an n x n matrix and
b € R".

Given an initial approximation x(© to the solution of the linear system
x, iterative techniques generate a sequence of vectors {x(*)}2 -
which converge to the solution x.



Jacobi’s Method

Given the linear system Ax = b, if a; # 0 solve the jth equation of the
system for x;.

bi = anxi+-- +aiX+ -+ ainXn
n
=t

We will have n equations of this form (1 <i < n).



Jacobi’s Method

Given the linear system Ax = b, if a; # 0 solve the jth equation of the
system for x;.

bi = anxi+-- +aiX+ -+ ainXn
n
=t

We will have n equations of this form (1 <i < n).

Given x(¥) then ] »
XD g 3 a,-,-z
o=ty
for 1 < i < n. The process can be repeated until
X — X1

% | oo

< €.



Example

Use Jacobi’s method to approximate the solution to the following
linear system. Use x(© = 0 and let e = 103,

1
—2X1 + Xo + 2% = 4
1
X1 — 2X2 — §X3 = -4
Xo+2x3 = 0

For purposes of comparison, the exact solution is

X —-16/11 —1.454545
X2 | = 16/11 | ~ 1.454545 | .
X3 —8/11 —0.727273



Solution

X4

X2

X3



Solution

Xy = —2+1X2—|—1X3
2 4
Xo = 2+1X1*1X3
2 4
X3 = —1X2
2

(B

2 3
0.0000 0.0000 0.0000
—2.0000 2.0000 0.0000
1.0000 —1.0000
—1.2500 1.2500 —0.8750
—1.5938 1.5938 —0.6250

A WN—=O X
I
—
o
o
o
o

19 | —1.4552 1.4552 —0.7268
20 | —1.4541 14541 —-0.7276




Matrix Notation for Jacobi’'s Method (1 of 2)

Matrix A can be decomposedas A= D — L — U where

art

—an

a2
a2

ane

0
0

—an2

ain
azn

ann

[N

i ai 0
0 ax
0 o0
[0 —arz
0 0
0 0



Matrix Notation for Jacobi’'s Method (2 of 2)

Ax = b
(D-L-Ux = b
Dx = (L+U)x+b
x = D' (L+U)x+D"b

assuming a; Z0for1 <i<n.



Matrix Notation for Jacobi’'s Method (2 of 2)

Ax = b
(D-L-Ux = b
Dx = (L+U)x+b
x = D' (L+U)x+D"b

assuming a; Z0for1 <i<n.

> Define T; = D~'(L+ U) and ¢; = D~ 'b.
» The Jacobi method can be expressed in matrix notation as

x®) = Txk=1 p ¢



Example

Express the following linear system in the Jacobi matrix notation.

1
—2X1+X2+§X3 = 4
1
X — X3 = —4
Xq Xo 2X3

Xo+2x3 = 0



Example

Express the following linear system in the Jacobi matrix notation.

1
—2X1+X2+§X3 = 4
1
—2Xo — = = -4
Xq Xo 2X3
Xo+2x3 = 0

Solution
-2 1 1)2 4
Let A= 1 -2 —1/2 | andb=| —4 |.
0

0o 1 2



Solution

L+ U

[—2 0 0

0 20

| 0 0 2
[0 -1 —1)2
-1 0 1)2
| 0 -1 0
0
D'(L+U)=| 1/2
0

-2

D 'b= [

2
0

|

1/2
0
-1/2

1/4
—1/4
0

|



Solution

[—2 0 0
0 20
| 0 02
0 -1 —1/2
-1 0 1/2
0 1 0

0 1/2 1/4
D“(L+U):[1/2 0 1/4]

0 —-1/2 0
-2
D b= 2
0

o 12 147 [ xY -
1/2 0 —1/4 || XD |+

0 —1/2 0



Improving the Jacobi Method

Recall that in the Jacobi method,

> As designed all the components of x(*~") are used to calculate
(k)
X

» When j > 1 the components xj(k) for 1 < j < ihave already been
calculated and should be more accurate than the components
xj(k*” for1 <j<i.

» We can modify the Jacobi method to use xj(k) for1 <j<iin

place of xj(k_” to improve the convergence of the algorithm. This
modification is known as the Gauss-Seidel iterative technique.



Gauss-Seidel Method

1 i—1 n B
=2 (b'_ Doap = > ap ).
1 .
j=1

j=i+1



Example

Use the Gauss-Seidel method to approximate the solution to the
following linear system. Use x(®) =0 and let ¢ = 10~3.

1
2 txet X = 4

X1 —2X2 — %Xg = —4

Xo+2x3 = 0



Solution

1 (k- 1 (k-
X1(k) — _2+§Xék 1)+ZX3(>k 1)
K 1w 1 (k1
xé) = 2+§X1()71X:§ )
1
Xék) _ _7X§k)



Solution

K 1 k=) 1 (k=1
x1() = —2+§xé )+Zx§ )
xék) = 2+ fxfk) fx3(k_1)

K 1 (k
IR
P SO
0 0.0000 0.0000 0.0000
1| —2.0000 1.0000 -0.5000
2| —-1.6250 1.3125 -0.6523
3| —-1.5078 1.4102 -0.7051
4 | —1.4712 1.4407 —-0.7203
5| —1.4598 1.4502 —-0.7251
6 | —1.4562 1.4532 —-0.7266
7| —1.4551 14541 —-0.7271




Gauss-Seidel Method in Matrix Form (1 of 2)

1 i—1 n B
KA (bf—za,-,-x;“ Y an
1l :
=1

j=i+

i—1 n
k k k—1
UM SLULED SETAN
j=1 J=i+1

i—1 n
k k —
i+ Lapf” = b= 3 ap
J=1 j=i+1



Gauss-Seidel Method in Matrix Form (2 of 2)

Since fori=1,2,...,n,

i—1 n
x(F) () _ p. Ly (k=1)
aix;’ + E ajx;" = b — E agx;” 7,
j=1 J=i+1

we can express the linear system as follows:

anx(? = bi—apx " —apx ) - —apx{
anx{) + apx( = bo—anx{ " — aux{ " - — apux{ Y
amx{) + apx{) +- -+ awx) = by

This is equivalent to the matrix form
(D-L)x® = b+ Uxk
x9 = (D-L) b+ (D-L)'Ux*D
xH = g4 TexE.



Example

Express the following linear system in the Gauss-Seidel matrix

notation.
1
—2X1 + X + 2% = 4
1
X{ — 2X2 — §X3 = —4

Xo+2x3 = 0



Example

Express the following linear system in the Gauss-Seidel matrix

notation.
1
—2X1 + X + 2% = 4
1
X{ — 2X2 — §X3 = —4
Xo+2x3 = 0

Solution

N

1 1/2 4
LetA= 1 -2 -1/2 | andb=| -4 |.
0o 1 2 0



Solution

(-2 0 0
1 -2 0
. 0 2]
[ —1/2 0
~1/4 —1/2
1/8 1/4
(D-Q4U:[

(D-qu:{

0
0
1&]
0o 1/2 1/4
0 1/4 -1/8
0 —-1/8 1/16
2
]
~1/2 ]

|



Solution

] 0o 1/2 1/4
(D—L)“U:[O 1/4 1/8]

-2
(D-L)'b= [ 1 ]

[—2 0 0
1 -2 0
o0 12
[ —1/2 0 o0
~1/4 —-1/2 0
18  1/4 1)2

0 —1/8 1/16

~1/2
o 12 147 [ xY
0 1/4 —1/8 XD+
0 —1/8 1/16 | | 40k



General lteration Methods

We have seen that we can express an iterative method for the
solution of a linear system in the form:

x®) = Txk=1) 4 ¢

for k =1,2,... where x(© is arbitrary.



General lteration Methods

We have seen that we can express an iterative method for the
solution of a linear system in the form:

x®) = Txk=1) 4 ¢
for k =1,2,... where x(© is arbitrary.

We must now establish conditions under which this iterative method
will converge to the unique solution of the system Ax = b.



Important Lemma

Lemma
If p(T) < 1 then (I — T)~" exists and

(=T "' =14+T+T?4--=> T.
j=0



Proof (1 of 2)

Tx = M\X
X—Tx X— X
(/I-T)x = (1-Xx

» Thus )\ is an eigenvalue of T if and only if 1 — X is an eigenvalue
of I-T.

> If p(T) < 1 then for any eigenvalue X of T, |\| < 1, therefore

AT

» Hence 1 — 1 = 0 cannot be an eigenvalue of / — T which implies
| — T is nonsingular.



Proof (2 of 2)

Define Sy =1+ T+ T?+ .-+ T"form=1,2,....

(I-T)Sm = (I+T+T24 4T —(T+T2 4.+ T™)

- /= Tm+1
Jim (1= T)Sn = fim (1= T")
(- T)mlim Snm = [I(since T is convergent)
— OO

Consequently (/- T)~' =322, T/.



Convergence of lterative Methods

Theorem
For any x(© € R" the sequence {x(}¢° ; defined by

xB = Tx*"Lcfork=1,2,...

converges to the unique solution of x = Tx+c ifand only if p(T) < 1.



Proof (1 of 4)

Suppose p(T) < 1, then by assumption

xK = Txk-D ¢
= T(Tx*k2 te)+ec
T2x*=2) 4 (1+ T)e

X(k) = Tkx(0)+(l+ T+”.Tk71)c
lim x®) = |im [TKX(O) S+ T+ Tk—1)c]
k— o0 k— oo

— { im 75 x© j
(lemooT)x +(;T)c

= 0+ (/- T) 'c(since T is convergent)
x = (I-T) e



Proof (2 of 4)

So far we know the sequence {x(¥)}2° ; converges to

x = (I-T)'e



Proof (2 of 4)

So far we know the sequence {x(¥)}2° ; converges to

x = (I-T)'c
(I-Tx = ¢
X = Tx+ec.

Hence x is a solution to the linear system.



Proof (3 of 4)

» To prove the converse, let z be any vector in R”.
> Let x be the unique solution to the linear system x = T x + c.



Proof (3 of 4)

» To prove the converse, let z be any vector in R”.
> Let x be the unique solution to the linear system x = T x + c.
» Define x(° = x — z and for k > 1 define x*) = Tx*-1) 1 ¢.



Proof (3 of 4)

» To prove the converse, let z be any vector in R”.
> Let x be the unique solution to the linear system x = T x + c.
» Define x(° = x — z and for k > 1 define x*) = Tx*-1) 1 ¢.
» By assumption lim x*) = x.

k—o0



Proof (4 of 4)

x—x® = (Tx+c)— (Txk 4x)
= T(x—x%1)

= T(T(x-x*2))

x—x® = Thx—x©)=Tkz

Since z is arbitrary then T is a convergent matrix and hence p(T) < 1.



Proof (4 of 4)

x—x® = (Tx+c)— (Txk 4x)
= T(x—x%1)

= T(T(x-x*2))

x—x® = Thx—x©)=Tkz
lim (x —x®) = lim Tkz
k— o0 k— o0
0 = |lim Tz
k— o0

Since z is arbitrary then T is a convergent matrix and hence p(T) < 1.



Error Bounds

Corollary
If|| T|| < 1 for any natural matrix norm and ¢ is a fixed vector, then the
sequence {x¥)}> . defined by x¥) = T x(k=") 1 ¢ converges for any
x(© to a vector x € R" with x = T X + ¢ with the following error
bounds.

1 {x = x| < || 7)) x© — x|
7]

(1) _ x(0)
X X

2. |Ix —x®|| <




Error Bounds

Corollary

If|| T|| < 1 for any natural matrix norm and ¢ is a fixed vector, then the
sequence {x¥)}> . defined by x¥) = T x(k=") 1 ¢ converges for any
x(© to a vector x € R" with x = T X + ¢ with the following error
bounds.

1 x = x® < 7))@ — x|

2. Jx—x) < LTI ) oo
R

Remark: if we can show that p(T;) < 1 and p(Ty) < 1 then the Jacobi
and Gauss-Seidel methods will always converge to the unique
solution of the linear system.



Diagonal Dominance

Theorem

If matrix A is strictly diagonally dominant, then for any choice of x(9),
both the Jacobi and Gauss-Seidel methods produce sequences
{x(K)}2<  that converge to the unique solution of AX = b.



Stein-Rosenberg Theorem

Theorem (Stein-Rosenberg)

Ifa; <0 foreachi# janda; >0 fori=1,2,..

of the following statements is true.
1.0 < p(Ty) < p(T)) <1

2. 0=p(Tg) = p(T)

3.1 <p(Tj) < p(Tg)

4.1 =p(Tg) < p(T))

., n then exactly one



Homework

» Read Section 7.3.
» Exercises: 1ac, 3ac, 5ac, 7ac



