Jacobi and Gauss-Seidel Iterative Techniques MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Objectives

In this lesson we will learn to

- solve linear systems using Jacobi's method,
- solve linear systems using the Gauss-Seidel method, and

(ロ) (同) (三) (三) (三) (○) (○)

solve linear systems using general iterative methods.

Background

- For small linear systems direct methods are often as efficient (or even more efficient) than the iterative methods to be discussed today.
- For large linear systems particularly those with sparse matrix representations (matrices with many zero entries), the iterative methods can be more efficient that the direct methods.
- Sparse linear systems are often found in applications such as ordinary and partial differential equarions and circuit analysis.

(ロ) (同) (三) (三) (三) (○) (○)

Consider the linear system $A\mathbf{x} = \mathbf{b}$ where A is an $n \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{n}$.

Given an initial approximation $\mathbf{x}^{(0)}$ to the solution of the linear system \mathbf{x} , iterative techniques generate a sequence of vectors $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ which converge to the solution \mathbf{x} .

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Jacobi's Method

Given the linear system $A\mathbf{x} = \mathbf{b}$, if $a_{ii} \neq 0$ solve the *i*th equation of the system for x_i .

$$b_i = a_{i1}x_1 + \dots + a_{ii}x_i + \dots + a_{in}x_n$$

$$x_i = \frac{b_i}{a_{ii}} - \sum_{j=1, j \neq i}^n \frac{a_{ij}x_j}{a_{ii}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

We will have *n* equations of this form $(1 \le i \le n)$.

Jacobi's Method

Given the linear system $A\mathbf{x} = \mathbf{b}$, if $a_{ii} \neq 0$ solve the *i*th equation of the system for x_i .

$$b_i = a_{i1}x_1 + \dots + a_{ii}x_i + \dots + a_{in}x_n$$

$$x_i = \frac{b_i}{a_{ii}} - \sum_{j=1, j \neq i}^n \frac{a_{ij}x_j}{a_{ii}}$$

We will have *n* equations of this form $(1 \le i \le n)$.

Given $\mathbf{x}^{(k)}$ then

$$x_i^{(k+1)} = rac{b_i}{a_{ii}} - \sum_{j=1, j
eq i}^n rac{a_{ij}x_j^{(k)}}{a_{ii}}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

for $1 \le i \le n$. The process can be repeated until $\frac{\|\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\|_{\infty}}{\|\mathbf{x}^{(k)}\|_{\infty}} < \epsilon.$

Example

Use Jacobi's method to approximate the solution to the following linear system. Use $\mathbf{x}^{(0)} = \mathbf{0}$ and let $\epsilon = 10^{-3}$.

$$-2x_1 + x_2 + \frac{1}{2}x_3 = 4$$
$$x_1 - 2x_2 - \frac{1}{2}x_3 = -4$$
$$x_2 + 2x_3 = 0$$

For purposes of comparison, the exact solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -16/11 \\ 16/11 \\ -8/11 \end{bmatrix} \approx \begin{bmatrix} -1.454545 \\ 1.454545 \\ -0.727273 \end{bmatrix}$$

.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Solution

$$\begin{aligned} x_1 &= -2 + \frac{1}{2}x_2 + \frac{1}{4}x_3 \\ x_2 &= 2 + \frac{1}{2}x_1 - \frac{1}{4}x_3 \\ x_3 &= -\frac{1}{2}x_2 \end{aligned}$$

Solution

$$x_1 = -2 + \frac{1}{2}x_2 + \frac{1}{4}x_3$$

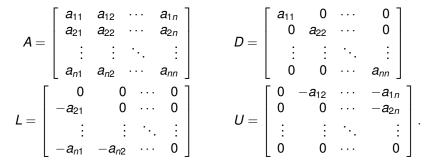
$$x_2 = 2 + \frac{1}{2}x_1 - \frac{1}{4}x_3$$

$$x_3 = -\frac{1}{2}x_2$$

k	$x_{1}^{(k)}$	$x_{2}^{(k)}$	$x_{3}^{(k)}$
0	0.0000	0.0000	0.0000
1	-2.0000	2.0000	0.0000
2	-1.0000	1.0000	-1.0000
3	-1.2500	1.2500	-0.8750
4	-1.5938	1.5938	-0.6250
÷	÷	÷	÷
19	-1.4552	1.4552	-0.7268
20	-1.4541	1.4541	-0.7276

Matrix Notation for Jacobi's Method (1 of 2)

Matrix A can be decomposed as A = D - L - U where



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Matrix Notation for Jacobi's Method (2 of 2)

$$A\mathbf{x} = \mathbf{b}$$

$$(D-L-U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} = (L+U)\mathbf{x} + \mathbf{b}$$

$$\mathbf{x} = D^{-1}(L+U)\mathbf{x} + D^{-1}\mathbf{b}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

assuming $a_{ii} \neq 0$ for $1 \leq i \leq n$.

Matrix Notation for Jacobi's Method (2 of 2)

$$A\mathbf{x} = \mathbf{b}$$

$$(D-L-U)\mathbf{x} = \mathbf{b}$$

$$D\mathbf{x} = (L+U)\mathbf{x} + \mathbf{b}$$

$$\mathbf{x} = D^{-1}(L+U)\mathbf{x} + D^{-1}\mathbf{b}$$

assuming $a_{ii} \neq 0$ for $1 \leq i \leq n$.

• Define $T_j = D^{-1}(L + U)$ and $\mathbf{c}_j = D^{-1}\mathbf{b}$.

The Jacobi method can be expressed in matrix notation as

$$\mathbf{x}^{(k)} = T_j \, \mathbf{x}^{(k-1)} + \mathbf{c}_j.$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Example

Express the following linear system in the Jacobi matrix notation.

$$-2x_1 + x_2 + \frac{1}{2}x_3 = 4$$
$$x_1 - 2x_2 - \frac{1}{2}x_3 = -4$$
$$x_2 + 2x_3 = 0$$

Example

Express the following linear system in the Jacobi matrix notation.

$$-2x_1 + x_2 + \frac{1}{2}x_3 = 4$$

$$x_1 - 2x_2 - \frac{1}{2}x_3 = -4$$

$$x_2 + 2x_3 = 0$$

(ロ)、

Solution
Let
$$A = \begin{bmatrix} -2 & 1 & 1/2 \\ 1 & -2 & -1/2 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ -4 \\ 0 \end{bmatrix}$.

Solution

$$D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$L + U = \begin{bmatrix} 0 & -1 & -1/2 \\ -1 & 0 & 1/2 \\ 0 & -1 & 0 \end{bmatrix}$$
$$T_{j} = D^{-1}(L + U) = \begin{bmatrix} 0 & 1/2 & 1/4 \\ 1/2 & 0 & -1/4 \\ 0 & -1/2 & 0 \end{bmatrix}$$
$$\mathbf{c}_{j} = D^{-1}\mathbf{b} = \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}$$

Solution

$$D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$L + U = \begin{bmatrix} 0 & -1 & -1/2 \\ -1 & 0 & 1/2 \\ 0 & -1 & 0 \end{bmatrix}$$

$$T_{j} = D^{-1}(L + U) = \begin{bmatrix} 0 & 1/2 & 1/4 \\ 1/2 & 0 & -1/4 \\ 0 & -1/2 & 0 \end{bmatrix}$$

$$\mathbf{c}_{j} = D^{-1}\mathbf{b} = \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_{1}^{(k)} \\ x_{2}^{(k)} \\ x_{3}^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 1/4 \\ 1/2 & 0 & -1/4 \\ 0 & -1/2 & 0 \end{bmatrix} \begin{bmatrix} x_{1}^{(k-1)} \\ x_{2}^{(k-1)} \\ x_{3}^{(k-1)} \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \\ 0 \end{bmatrix}$$

くりょう 小田 マイビット 日 うくの

Improving the Jacobi Method

Recall that in the Jacobi method,

$$x_i^{(k)} = \frac{1}{a_{ij}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k-1)} \right)$$

- As designed all the components of $\mathbf{x}^{(k-1)}$ are used to calculate $x_i^{(k)}$.
- When *i* > 1 the components x_j^(k) for 1 ≤ *j* < *i* have already been calculated and should be more accurate than the components x_j^(k-1) for 1 ≤ *j* < *i*.
- ► We can modify the Jacobi method to use x_j^(k) for 1 ≤ j < i in place of x_j^(k-1) to improve the convergence of the algorithm. This modification is known as the Gauss-Seidel iterative technique.

Gauss-Seidel Method

$$x_i^{(k)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Example

Use the Gauss-Seidel method to approximate the solution to the following linear system. Use $\mathbf{x}^{(0)} = \mathbf{0}$ and let $\epsilon = 10^{-3}$.

$$-2x_1 + x_2 + \frac{1}{2}x_3 = 4$$
$$x_1 - 2x_2 - \frac{1}{2}x_3 = -4$$
$$x_2 + 2x_3 = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Solution

$$\begin{aligned} x_1^{(k)} &= -2 + \frac{1}{2} x_2^{(k-1)} + \frac{1}{4} x_3^{(k-1)} \\ x_2^{(k)} &= 2 + \frac{1}{2} x_1^{(k)} - \frac{1}{4} x_3^{(k-1)} \\ x_3^{(k)} &= -\frac{1}{2} x_2^{(k)} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution

 $\begin{aligned} x_1^{(k)} &= -2 + \frac{1}{2} x_2^{(k-1)} + \frac{1}{4} x_3^{(k-1)} \\ x_2^{(k)} &= 2 + \frac{1}{2} x_1^{(k)} - \frac{1}{4} x_3^{(k-1)} \\ x_3^{(k)} &= -\frac{1}{2} x_2^{(k)} \end{aligned}$

k	$x_{1}^{(k)}$	$X_2^{(k)}$	$x_{3}^{(k)}$
0	0.0000	0.0000	0.0000
1	-2.0000	1.0000	-0.5000
2	-1.6250	1.3125	-0.6523
3	-1.5078	1.4102	-0.7051
4	-1.4712	1.4407	-0.7203
5	-1.4598	1.4502	-0.7251
6	-1.4562	1.4532	-0.7266
7	-1.4551	1.4541	-0.7271

Gauss-Seidel Method in Matrix Form (1 of 2)

$$\begin{aligned} x_i^{(k)} &= \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) \\ a_{ii} x_i^{(k)} &= b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \\ a_{ii} x_i^{(k)} + \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} &= b_i - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ◆ ◆ ● ◆

Gauss-Seidel Method in Matrix Form (2 of 2)

Since for i = 1, 2, ..., n,

$$a_{ii}x_i^{(k)} + \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = b_i - \sum_{j=i+1}^n a_{ij}x_j^{(k-1)},$$

we can express the linear system as follows:

$$\begin{aligned} a_{11}x_1^{(k)} &= b_1 - a_{12}x_2^{(k-1)} - a_{13}x_3^{(k-1)} - \dots - a_{1n}x_n^{(k-1)} \\ a_{21}x_1^{(k)} + a_{22}x_2^{(k)} &= b_2 - a_{23}x_2^{(k-1)} - a_{24}x_3^{(k-1)} - \dots - a_{2n}x_n^{(k-1)} \\ &\vdots \\ a_{n1}x_1^{(k)} + a_{n2}x_2^{(k)} + \dots + a_{nn}x_n^{(k)} &= b_n \end{aligned}$$

This is equivalent to the matrix form

$$(D-L)\mathbf{x}^{(k)} = \mathbf{b} + U\mathbf{x}^{(k-1)}$$

$$\mathbf{x}^{(k)} = (D-L)^{-1}\mathbf{b} + (D-L)^{-1}U\mathbf{x}^{(k-1)}$$

$$\mathbf{x}^{(k)} = \mathbf{c}_g + T_g\mathbf{x}^{(k-1)}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ● ●

Example

Express the following linear system in the Gauss-Seidel matrix notation.

$$-2x_1 + x_2 + \frac{1}{2}x_3 = 4$$

$$x_1 - 2x_2 - \frac{1}{2}x_3 = -4$$

$$x_2 + 2x_3 = 0$$

Example

Express the following linear system in the Gauss-Seidel matrix notation.

$$-2x_1 + x_2 + \frac{1}{2}x_3 = 4$$

$$x_1 - 2x_2 - \frac{1}{2}x_3 = -4$$

$$x_2 + 2x_3 = 0$$

Solution
Let
$$A = \begin{bmatrix} -2 & 1 & 1/2 \\ 1 & -2 & -1/2 \\ 0 & 1 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 4 \\ -4 \\ 0 \end{bmatrix}$.

Solution

$$D-L = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$
$$(D-L)^{-1} = \begin{bmatrix} -1/2 & 0 & 0 \\ -1/4 & -1/2 & 0 \\ 1/8 & 1/4 & 1/2 \end{bmatrix}$$
$$T_g = (D-L)^{-1}U = \begin{bmatrix} 0 & 1/2 & 1/4 \\ 0 & 1/4 & -1/8 \\ 0 & -1/8 & 1/16 \end{bmatrix}$$
$$\mathbf{c}_g = (D-L)^{-1}\mathbf{b} = \begin{bmatrix} -2 \\ 1 \\ -1/2 \end{bmatrix}$$

くりょう 小田 マイビット 日 うくの

Solution

$$D-L = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

$$(D-L)^{-1} = \begin{bmatrix} -1/2 & 0 & 0 \\ -1/4 & -1/2 & 0 \\ 1/8 & 1/4 & 1/2 \end{bmatrix}$$

$$T_g = (D-L)^{-1}U = \begin{bmatrix} 0 & 1/2 & 1/4 \\ 0 & 1/4 & -1/8 \\ 0 & -1/8 & 1/16 \end{bmatrix}$$

$$\mathbf{c}_g = (D-L)^{-1}\mathbf{b} = \begin{bmatrix} -2 \\ 1 \\ -1/2 \end{bmatrix}$$

$$\begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ x_3^{(k)} \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 1/4 \\ 0 & 1/4 & -1/8 \\ 0 & -1/8 & 1/16 \end{bmatrix} \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \\ -1/2 \end{bmatrix}$$

We have seen that we can express an iterative method for the solution of a linear system in the form:

$${f x}^{(k)} = T \, {f x}^{(k-1)} + {f c}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

for k = 1, 2, ... where $\mathbf{x}^{(0)}$ is arbitrary.

We have seen that we can express an iterative method for the solution of a linear system in the form:

$${f x}^{(k)} = T \, {f x}^{(k-1)} + {f c}$$

for k = 1, 2, ... where $\mathbf{x}^{(0)}$ is arbitrary.

We must now establish conditions under which this iterative method will converge to the unique solution of the system $A \mathbf{x} = \mathbf{b}$.

(日) (日) (日) (日) (日) (日) (日)

Important Lemma

Lemma If $\rho(T) < 1$ then $(I - T)^{-1}$ exists and

$$(I-T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j$$

-

Proof (1 of 2)

$$T \mathbf{x} = \lambda \mathbf{x}$$
$$\mathbf{x} - T \mathbf{x} = \mathbf{x} - \lambda \mathbf{x}$$
$$(I - T)\mathbf{x} = (1 - \lambda)\mathbf{x}$$

- Thus λ is an eigenvalue of T if and only if 1 − λ is an eigenvalue of I − T.
- If $\rho(T) < 1$ then for any eigenvalue λ of T, $|\lambda| < 1$, therefore $\lambda \neq 1$.
- Hence 1 1 = 0 cannot be an eigenvalue of I T which implies I T is nonsingular.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Proof (2 of 2)

Define $S_m = I + T + T^2 + \cdots + T^m$ for m = 1, 2, ...

$$(I - T)S_m = (I + T + T^2 + \dots + T^m) - (T + T^2 + \dots + T^{m+1})$$

= $I - T^{m+1}$
$$\lim_{m \to \infty} (I - T)S_m = \lim_{m \to \infty} (I - T^{m+1})$$

 $(I - T) \lim_{m \to \infty} S_m = I \text{ (since } T \text{ is convergent)}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Consequently $(I - T)^{-1} = \sum_{j=0}^{\infty} T^j$.

Convergence of Iterative Methods

Theorem For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$ the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

$$\mathbf{x}^{(k)} = T \, \mathbf{x}^{(k-1)} + \mathbf{c}$$
 for $k = 1, 2, ...$

converges to the unique solution of $\mathbf{x} = T \mathbf{x} + \mathbf{c}$ if and only if $\rho(T) < 1$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof (1 of 4)

Suppose $\rho(T) < 1$, then by assumption

٠

$$\mathbf{x}^{(k)} = T \mathbf{x}^{(k-1)} + \mathbf{c} = T(T \mathbf{x}^{(k-2)} + \mathbf{c}) + \mathbf{c} = T^2 \mathbf{x}^{(k-2)} + (I+T)\mathbf{c}$$

:

$$\mathbf{x}^{(k)} = T^{k}\mathbf{x}^{(0)} + (I + T + \dots T^{k-1})\mathbf{c}$$

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \lim_{k \to \infty} \left[T^{k}\mathbf{x}^{(0)} + (I + T + \dots T^{k-1})\mathbf{c}\right]$$

$$= \left(\lim_{k \to \infty} T^{k}\right)\mathbf{x}^{(0)} + \left(\sum_{j=0}^{\infty} T^{j}\right)\mathbf{c}$$

$$= \mathbf{0} + (I - T)^{-1}\mathbf{c} \text{ (since } T \text{ is convergent)}$$

$$\mathbf{x} = (I - T)^{-1}\mathbf{c}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Proof (2 of 4)

So far we know the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ converges to

$$x = (I - T)^{-1}c$$

Proof (2 of 4)

So far we know the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ converges to

$$\mathbf{x} = (I - T)^{-1}\mathbf{c}$$
$$(I - T)\mathbf{x} = \mathbf{c}$$
$$\mathbf{x} = T\mathbf{x} + \mathbf{c}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hence **x** is a solution to the linear system.

Proof (3 of 4)

- ▶ To prove the converse, let **z** be any vector in \mathbb{R}^n .
- Let **x** be the unique solution to the linear system $\mathbf{x} = T \mathbf{x} + \mathbf{c}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof (3 of 4)

- To prove the converse, let \mathbf{z} be any vector in \mathbb{R}^n .
- Let **x** be the unique solution to the linear system $\mathbf{x} = T \mathbf{x} + \mathbf{c}$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Define $\mathbf{x}^{(0)} = \mathbf{x} - \mathbf{z}$ and for $k \ge 1$ define $\mathbf{x}^{(k)} = T \mathbf{x}^{(k-1)} + \mathbf{c}$.

Proof (3 of 4)

- ▶ To prove the converse, let **z** be any vector in \mathbb{R}^n .
- Let **x** be the unique solution to the linear system $\mathbf{x} = T \mathbf{x} + \mathbf{c}$.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Define $\mathbf{x}^{(0)} = \mathbf{x} - \mathbf{z}$ and for $k \ge 1$ define $\mathbf{x}^{(k)} = T \mathbf{x}^{(k-1)} + \mathbf{c}$.

• By assumption
$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{x}$$
.

Proof (4 of 4)

$$\mathbf{x} - \mathbf{x}^{(k)} = (T \mathbf{x} + \mathbf{c}) - (T \mathbf{x}^{(k-1)} + \mathbf{x})$$

= $T(\mathbf{x} - \mathbf{x}^{(k-1)})$
= $T\left(T(\mathbf{x} - \mathbf{x}^{(k-2)})\right)$
:
$$\mathbf{x} - \mathbf{x}^{(k)} = T^{k}(\mathbf{x} - \mathbf{x}^{(0)}) = T^{k}\mathbf{z}$$

Since **z** is arbitrary then *T* is a convergent matrix and hence $\rho(T) < 1$.

Proof (4 of 4)

$$\mathbf{x} - \mathbf{x}^{(k)} = (T \mathbf{x} + \mathbf{c}) - (T \mathbf{x}^{(k-1)} + \mathbf{x})$$

$$= T(\mathbf{x} - \mathbf{x}^{(k-1)})$$

$$= T\left(T(\mathbf{x} - \mathbf{x}^{(k-2)})\right)$$

$$\vdots$$

$$\mathbf{x} - \mathbf{x}^{(k)} = T^{k}(\mathbf{x} - \mathbf{x}^{(0)}) = T^{k}\mathbf{z}$$

$$\lim_{k \to \infty} (\mathbf{x} - \mathbf{x}^{(k)}) = \lim_{k \to \infty} T^{k}\mathbf{z}$$

$$\mathbf{0} = \lim_{k \to \infty} T^{k}\mathbf{z}$$

Since **z** is arbitrary then *T* is a convergent matrix and hence $\rho(T) < 1$.

Error Bounds

Corollary

If ||T|| < 1 for any natural matrix norm and **c** is a fixed vector, then the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by $\mathbf{x}^{(k)} = T \mathbf{x}^{(k-1)} + \mathbf{c}$ converges for any $\mathbf{x}^{(0)}$ to a vector $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} = T \mathbf{x} + \mathbf{c}$ with the following error bounds.

(ロ) (同) (三) (三) (三) (○) (○)

1.
$$\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \|\mathcal{T}\|^{k} \|\mathbf{x}^{(0)} - \mathbf{x}\|$$

2. $\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \frac{\|\mathcal{T}\|^{k}}{1 - \|\mathcal{T}\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$

Error Bounds

Corollary

If ||T|| < 1 for any natural matrix norm and **c** is a fixed vector, then the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by $\mathbf{x}^{(k)} = T \mathbf{x}^{(k-1)} + \mathbf{c}$ converges for any $\mathbf{x}^{(0)}$ to a vector $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} = T \mathbf{x} + \mathbf{c}$ with the following error bounds.

1.
$$\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \|\mathcal{T}\|^{k} \|\mathbf{x}^{(0)} - \mathbf{x}\|$$

2. $\|\mathbf{x} - \mathbf{x}^{(k)}\| \le \frac{\|\mathcal{T}\|^{k}}{1 - \|\mathcal{T}\|} \|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|$

Remark: if we can show that $\rho(T_j) < 1$ and $\rho(T_g) < 1$ then the Jacobi and Gauss-Seidel methods will always converge to the unique solution of the linear system.

(日) (日) (日) (日) (日) (日) (日)

Diagonal Dominance

Theorem

If matrix A is strictly diagonally dominant, then for any choice of $\mathbf{x}^{(0)}$, both the Jacobi and Gauss-Seidel methods produce sequences $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ that converge to the unique solution of $A\mathbf{x} = \mathbf{b}$.

(日) (日) (日) (日) (日) (日) (日)

Stein-Rosenberg Theorem

Theorem (Stein-Rosenberg)

If $a_{ij} \leq 0$ for each $i \neq j$ and $a_{ii} > 0$ for i = 1, 2, ..., n then exactly one of the following statements is true.

1. $0 \le \rho(T_g) < \rho(T_j) < 1$ 2. $0 = \rho(T_g) = \rho(T_j)$ 3. $1 < \rho(T_j) < \rho(T_g)$ 4. $1 = \rho(T_g) < \rho(T_j)$

Homework

Read Section 7.3.

Exercises: 1ac, 3ac, 5ac, 7ac