Interpolation and the Lagrange Polynomial MATH 375

J Robert Buchanan

Department of Mathematics

Spring 2022

Introduction

We often choose **polynomials** to approximate other classes of functions.

Theorem (Weierstrass Approximation Theorem) If $f \in C[a, b]$ and $\epsilon > 0$ then there exists a polynomial P such that

 $|f(x) - P(x)| < \epsilon$, for all $x \in [a, b]$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction

We often choose **polynomials** to approximate other classes of functions.

Theorem (Weierstrass Approximation Theorem) If $f \in C[a, b]$ and $\epsilon > 0$ then there exists a polynomial P such that

$$|f(x) - P(x)| < \epsilon$$
, for all $x \in [a, b]$.

We have used Taylor polynomials to approximate functions.

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Away from x_0 the approximation may be very poor.

Using the two-point formula for a line we determine the equation of the line to be

$$y = f(x_0) + \left(\frac{f(x_1) - f(x_0)}{x_1 - x_0}\right)(x - x_0).$$

We can take another approach to finding the linear approximation. Define

•
$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
,
• $L_1(x) = \frac{x - x_0}{x_1 - x_0}$,

We can take another approach to finding the linear approximation. Define

•
$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
, then $L_0(x_0) = 1$ and $L_0(x_1) = 0$.
• $L_1(x) = \frac{x - x_0}{x_1 - x_0}$,

We can take another approach to finding the linear approximation. Define

•
$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
, then $L_0(x_0) = 1$ and $L_0(x_1) = 0$.
• $L_1(x) = \frac{x - x_0}{x_1 - x_0}$, then $L_1(x_0) = 0$ and $L_1(x_1) = 1$.

We can take another approach to finding the linear approximation. Define

•
$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
, then $L_0(x_0) = 1$ and $L_0(x_1) = 0$.
• $L_1(x) = \frac{x - x_0}{x_1 - x_0}$, then $L_1(x_0) = 0$ and $L_1(x_1) = 1$.

If f(x) is any function then

$$P_1(x) = f(x_0) L_0(x) + f(x_1) L_1(x)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is a linear function which matches f(x) at $x = x_0$ and $x = x_1$.

We can take another approach to finding the linear approximation. Define

•
$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
, then $L_0(x_0) = 1$ and $L_0(x_1) = 0$.
• $L_1(x) = \frac{x - x_0}{x_1 - x_0}$, then $L_1(x_0) = 0$ and $L_1(x_1) = 1$.

If f(x) is any function then

$$P_1(x) = f(x_0) L_0(x) + f(x_1) L_1(x)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

is a linear function which matches f(x) at $x = x_0$ and $x = x_1$.

We want to extend this idea to higher order polynomials.

Construction of Polynomials

Challenge: given a function f(x), construct a polynomial $P_n(x)$ of degree at most *n* which matches f(x) at n + 1 distinct points.

 $\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Construction of Polynomials

Challenge: given a function f(x), construct a polynomial $P_n(x)$ of degree at most *n* which matches f(x) at n + 1 distinct points.

$$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}$$

Strategy: construct n + 1 polynomials $L_{n,k}(x)$ of degree *n* with the property that

$$L_{n,k}(x_i) = \begin{cases} 0 & \text{if } k \neq i, \\ 1 & \text{if } k = i \end{cases}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for $k = 0, 1, 2, \ldots, n$.

Lagrange Basis Polynomials

Definition

Suppose $\{x_0, x_1, ..., x_n\}$ is a set of n + 1 distinct points. A Lagrange Basis Polynomial is a polynomial of degree *n* having the form

$$L_{n,k}(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x-x_i}{x_k-x_i}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lagrange Basis Polynomials

Definition

Suppose $\{x_0, x_1, ..., x_n\}$ is a set of n + 1 distinct points. A Lagrange Basis Polynomial is a polynomial of degree *n* having the form

$$L_{n,k}(x) = \prod_{\substack{i=0\\i\neq k}}^n \frac{x-x_i}{x_k-x_i}.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remarks:

We will let k = 0, 1, 2, ..., n.

$$\blacktriangleright L_{n,k}(x_i) = 1 \text{ for } i = k$$

►
$$L_{n,k}(x_i) = 0$$
 for $i \neq k$.

If $x_i = i$ for i = 0, 1, 2 then we can create three different Lagrange Basis Polynomials.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

 $L_{2,0}(x) =$ $L_{2,1}(x) =$ $L_{2,2}(x) =$

If $x_i = i$ for i = 0, 1, 2 then we can create three different Lagrange Basis Polynomials.

$$L_{2,0}(x) = \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} = \frac{1}{2}(x-1)(x-2)$$
$$L_{2,1}(x) = L_{2,2}(x) =$$

If $x_i = i$ for i = 0, 1, 2 then we can create three different Lagrange Basis Polynomials.

$$L_{2,0}(x) = \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} = \frac{1}{2}(x-1)(x-2)$$
$$L_{2,1}(x) = \frac{x-0}{1-0} \cdot \frac{x-2}{1-2} = x(2-x)$$
$$L_{2,2}(x) =$$

If $x_i = i$ for i = 0, 1, 2 then we can create three different Lagrange Basis Polynomials.

$$L_{2,0}(x) = \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} = \frac{1}{2}(x-1)(x-2)$$

$$L_{2,1}(x) = \frac{x-0}{1-0} \cdot \frac{x-2}{1-2} = x(2-x)$$

$$L_{2,2}(x) = \frac{x-0}{2-0} \cdot \frac{x-1}{2-1} = \frac{1}{2}x(x-1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Graph

$$L_{2,0}(x) = \frac{1}{2}(x-1)(x-2)$$
$$L_{2,1}(x) = x(2-x)$$
$$L_{2,2}(x) = \frac{1}{2}x(x-1)$$

・ロト・四ト・モート ヨー うへの

If n = 9 and the nodes are $\{0, 1, ..., 9\}$ then $L_{9,4}(x)$ has a graph resembling the following.

Lagrange Interpolating Polynomials

Definition

Let $\{x_0, x_1, ..., x_n\}$ be a set of n + 1 distinct points at which the function f(x) is defined. The (unique) Lagrange Interpolating **Polynomial** of f(x) of degree *n* is the polynomial having the form

$$P_n(x) = \sum_{k=0}^n f(x_k) L_{n,k}(x).$$

(日) (日) (日) (日) (日) (日) (日)

Properties:

Example (1 of 4)

Let $f(x) = \sin x$, n = 3, and $x_k = k\pi/3$ for k = 0, 1, 2, 3. The four Lagrange Basis Polynomials are listed below.

$$\begin{split} L_{3,0}(x) &= \frac{x - \frac{\pi}{3}}{0 - \frac{\pi}{3}} \cdot \frac{x - \frac{2\pi}{3}}{0 - \frac{2\pi}{3}} \cdot \frac{x - \pi}{0 - \pi} \\ &= \frac{1}{2\pi^3} (\pi - 3x)(2\pi - 3x)(\pi - x) \\ L_{3,1}(x) &= \frac{9}{2\pi^3} x (2\pi - 3x)(\pi - x) \\ L_{3,2}(x) &= -\frac{9}{2\pi^3} x (\pi - 3x)(\pi - x) \\ L_{3,3}(x) &= \frac{1}{2\pi^3} x (\pi - 3x)(2\pi - 3x) \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example (2 of 4)

The Lagrange Interpolating Polynomial of degree 3 for $f(x) = \sin x$ and $x_k = k\pi/3$ for k = 0, 1, 2, 3 is

$$\begin{aligned} P_{3}(x) &= (\sin 0) \, L_{3,0}(x) + \left(\sin \frac{\pi}{3}\right) L_{3,1}(x) + \left(\sin \frac{2\pi}{3}\right) L_{3,2}(x) \\ &+ (\sin \pi) \, L_{3,3}(x) \\ &= \frac{\sqrt{3}}{2} \cdot \frac{9}{2\pi^{3}} x (2\pi - 3x) (\pi - x) - \frac{\sqrt{3}}{2} \cdot \frac{9}{2\pi^{3}} x (\pi - 3x) (\pi - x) \\ &= \frac{9\sqrt{3}}{4\pi^{2}} x (\pi - x) \end{aligned}$$

 $\langle \mathbf{n} \rangle$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Example (3 of 4)

The graphs of $P_3(x)$ and sin *x*.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example (4 of 4)

The graph of $|P_3(x) - \sin x|$.

Х

Lagrange Polynomial with Error Term

Theorem

Suppose $x_0, x_1, ..., x_n$ are distinct numbers in the interval [a, b] and suppose $f \in C^{n+1}[a, b]$. Then for each $x \in [a, b]$ there exists a number $z(x) \in (a, b)$ for which

$$f(x) = P_n(x) + \frac{f^{(n+1)}(z(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n),$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

where $P_n(x)$ is the Lagrange Interpolating Polynomial.

Proof (1 of 3)

Define the function $\Lambda(t)$ as follows:

$$\Lambda(t) = (P_n(x) - f(x)) \frac{(t - x_0)(t - x_1) \cdots (t - x_n)}{(x - x_0)(x - x_1) \cdots (x - x_n)}.$$

Proof (1 of 3)

Define the function $\Lambda(t)$ as follows:

$$\Lambda(t) = (P_n(x) - f(x)) \frac{(t - x_0)(t - x_1) \cdots (t - x_n)}{(x - x_0)(x - x_1) \cdots (x - x_n)}.$$

Similarly define function g(t) as

$$g(t) = P(t) - f(t) - \Lambda(t)$$

= $(P(t) - f(t)) - (P_n(x) - f(x)) \frac{(t - x_0)(t - x_1) \cdots (t - x_n)}{(x - x_0)(x - x_1) \cdots (x - x_n)}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Note:

Proof (2 of 3)

Theorem (Generalized Rolle's)

Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If f has n + 1 distinct roots

 $a \leq x_0 < x_1 < \cdots < x_n \leq b$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

then there exists $c \in (x_0, x_n) \subset (a, b)$ such that $f^{(n)}(c) = 0$.

Proof (2 of 3)

Theorem (Generalized Rolle's)

Suppose $f \in C[a, b]$ is n times differentiable on (a, b). If f has n + 1 distinct roots

$$a \leq x_0 < x_1 < \cdots < x_n \leq b,$$

then there exists $c \in (x_0, x_n) \subset (a, b)$ such that $f^{(n)}(c) = 0$.

Applying Generalized Rolle's Theorem to function g(t), there is a $z(x) \in (a, b)$ such that $g^{(n+1)}(z(x)) = 0$.

$$g^{(n+1)}(z(x)) = P^{(n+1)}(z(x)) - f^{(n+1)}(z(x)) - \Lambda^{(n+1)}(z(x))$$

$$0 = 0 - f^{(n+1)}(z(x)) - \Lambda^{(n+1)}(z(x))$$

$$f^{(n+1)}(z(x)) = -\Lambda^{(n+1)}(z(x))$$

(ロ) (同) (三) (三) (三) (○) (○)

Proof (3 of 3)

Function $\Lambda(t)$ is a polynomial of degree n + 1 in variable t.

$$\Lambda(t) = \frac{P_n(x) - f(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} \left[(t - x_0)(t - x_1) \cdots (t - x_n) \right]$$
$$\Lambda^{(n+1)}(t) = \frac{P_n(x) - f(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} (n+1)!$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Proof (3 of 3)

Function $\Lambda(t)$ is a polynomial of degree n + 1 in variable t.

$$\Lambda(t) = \frac{P_n(x) - f(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} [(t - x_0)(t - x_1) \cdots (t - x_n)]$$

$$\Lambda^{(n+1)}(t) = \frac{P_n(x) - f(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} (n+1)!$$

$$f^{(n+1)}(z(x)) = \frac{f(x) - P_n(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} (n+1)!$$

$$f(x) - P_n(x) = \frac{f^{(n+1)}(z(x))}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Comments

 Compare the error terms of the Lagrange polynomial and the Taylor polynomial.

Taylor:
$$\frac{f^{(n+1)}(z(x))}{(n+1)!}(x-x_0)^{n+1}$$

Lagrange:
$$\frac{f^{(n+1)}(z(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)$$

Lagrange polynomials form the basis of many numerical approximations to derivatives and integrals, and thus the error term is important to understanding the errors present in those approximations.

Error in sin x

Earlier we found the Lagrange interpolating polynomial of degree 3 for $f(x) = \sin x$ using nodes $x_k = k\pi/3$ for k = 0, 1, 2, 3 was

$$P_3(x) = \frac{9\sqrt{3}}{4\pi^2}x(\pi - x).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What is an error bound for this approximation?

Error in sin x

Earlier we found the Lagrange interpolating polynomial of degree 3 for $f(x) = \sin x$ using nodes $x_k = k\pi/3$ for k = 0, 1, 2, 3 was

$$P_3(x) = rac{9\sqrt{3}}{4\pi^2}x(\pi-x).$$

What is an error bound for this approximation?

$$|R(x)| = \left| \frac{\sin z}{4!} (x - 0) \left(x - \frac{\pi}{3} \right) \left(x - \frac{2\pi}{3} \right) (x - \pi) \right|$$

$$\leq \frac{1}{24} \max_{0 \le x \le \pi} \left| x \left(x - \frac{\pi}{3} \right) \left(x - \frac{2\pi}{3} \right) (x - \pi) \right|$$

$$= \frac{1.20258}{24} = 0.050108$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Error Bound vs. Actual Error

・ロト・(四ト・(川下・(日下)))

Let $f(x) = e^{\cos(x+1)^2}$ and use the nodes located at

 $\{0, 0.289613, 0.388303, 0.452164, 0.975935, 1\}$

to find the Lagrange interpolating polynomial of degree at most 5 which interpolates f(x) on the interval [0, 1]. Find an error bound for the interpolation.

(日) (日) (日) (日) (日) (日) (日)

Solution

$$\begin{split} P_5(x) &= f(0)L_{5,0}(x) + f(0.289613)L_{5,1}(x) + f(0.388303)L_{5,2}(x) \\ &+ f(0.452164)L_{5,3}(x) + f(0.975935)L_{5,4}(x) + f(1)L_{5,5}(x) \end{split}$$

Error Bound

Consider a plot of $f^{(6)}(z)$ on [0, 1].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Let $g(x) = \cos e^{(x+1)^2}$ and use the nodes located at

 $\{0, 0.289613, 0.388303, 0.452164, 0.975935, 1\}$

to find the Lagrange interpolating polynomial of degree at most 5 which interpolates g(x) on the interval [0, 1]. Find an error bound for the interpolation.

Solution

$$\begin{split} P_5(x) &= g(0)L_{5,0}(x) + g(0.289613)L_{5,1}(x) + g(0.388303)L_{5,2}(x) \\ &+ g(0.452164)L_{5,3}(x) + g(0.975935)L_{5,4}(x) + g(1)L_{5,5}(x) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Error Bound

Consider a plot of $g^{(6)}(z)$ on [0, 1].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Application

Example

Suppose we are preparing a table of values for $\cos x$ on $[0, \pi]$. The entries in the table will have eight accurate decimal places and we will linearly interpolate between adjacent entries to determine intermediate values. What should the spacing between adjacent *x*-values be to preserve the eight-decimal-place accuracy in the interpolation?

(ロ) (同) (三) (三) (三) (○) (○)

Solution

$$|\cos x - P_{1}(x)| = \left| \frac{-\cos z}{2} \right| |x - x_{j}| |x - x_{j+1}| \quad \text{for some } 0 \le z \le \pi$$
$$\le \frac{1}{2} \max_{0 \le z \le \pi} |\cos z| \cdot \max_{x_{j} \le x \le x_{j+1}} |x - x_{j}| |x - x_{j+1}|$$
$$= \frac{1}{2} \max_{jh \le x \le (j+1)h} |(x - jh)(x - (j+1)h)|$$
$$= \frac{h^{2}}{8}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Thus if $h^2/8 < 10^{-8}$ then $h < 2\sqrt{2} \times 10^{-4} \approx 0.000282$.

Connections with Root Finding

Recall the Secant method: given x_0 and x_1 then

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}.$$

The expression ^{f(x_n) − f(x_{n-1})}/_{x_n − x_{n-1}} is the slope of the secant line through (x_{n-1}, f(x_{n-1})) and (x_n, f(x_n)).
 The expression ^{f(x_n) − f(x_{n-1})}/_{x_n − x_{n-1}} can also be thought of as the

derivative of the linear Lagrange interpolating function for f(x) at points { $(x_{n-1}, f(x_{n-1})), (x_n, f(x_n))$ }.

(日) (日) (日) (日) (日) (日) (日)

Connections with Root Finding

Recall the Secant method: given x_0 and x_1 then

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}.$$

- ► The expression $\frac{f(x_n) f(x_{n-1})}{x_n x_{n-1}}$ is the slope of the secant line through $(x_{n-1}, f(x_{n-1}))$ and $(x_n, f(x_n))$.
- ► The expression $\frac{f(x_n) f(x_{n-1})}{x_n x_{n-1}}$ can also be thought of as the derivative of the linear Lagrange interpolating function for f(x) at points { $(x_{n-1}, f(x_{n-1})), (x_n, f(x_n))$ }.

A generalization of the Secant method would be Sidi's method,

$$x_{n+1} = x_n - \frac{f(x_n)}{P'_{n,k}(x_n)}$$

where $P_{n,k}(x)$ is the Lagrange interpolating polynomial passing through

$$\{(x_{n-k}, f(x_{n-k})), (x_{n-k+1}, f(x_{n-k+1})), \dots, (x_n, f(x_n))\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sidi's Method of degree 3

Find a root of $J_{7/2}(x)$ in the interval [6,8] using Sidi's method of degree 3 and the four initial approximations at $x \in \{6, 8, 6.5, 7.5\}$. What is the rate of convergence?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Results

n	Newton x _n	Secant x _n	Sidi x _n
0	6.00000	6.00000	6.00000
1	7.16766	8.00000	8.00000
2	6.98412	7.06918	6.50000
3	6.98793	6.96811	7.50000
4	6.98793	6.98806	6.93156
5	6.98793	6.98793	6.98785
6	6.98793	6.98793	6.98793

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Rate of Convergence

Consider the sequence of values of $\frac{|x_{n+1} - x|}{|x_n - x|^{\alpha}}$ where x = 6.98793 for various values of α .

n	x _n	$\alpha = 1$	$\alpha = \frac{1 + \sqrt{5}}{2}$	$\alpha = 2$
0	6.00000	1.02443	1.03215	1.03694
1	8.00000	0.48211	0.47855	0.47637
2	6.50000	1.04947	1.63521	2.15084
3	7.50000	0.11009	0.16649	0.21499
4	6.93156	0.00150	0.00887	0.02660
5	6.98785	0.00003	0.01150	0.413517
6	6.98793			

It appears the rate of convergence of Sidi's Method with k = 3 is $\frac{1 + \sqrt{5}}{2} < \alpha < 2$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Homework

Read Section 3.1

Exercises: 1, 3, 5a, 7a, 13, 17

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●