Interpolation and the Lagrange Polynomial MATH 375

J Robert Buchanan

Department of Mathematics

Spring 2022

Introduction

We often choose **polynomials** to approximate other classes of functions.

Theorem (Weierstrass Approximation Theorem) *If f* \in *C*[*a*, *b*] *and* ϵ > 0 *then there exists a polynomial P such that*

 $|f(x) - P(x)| < \epsilon$, for all $x \in [a, b]$.

Introduction

We often choose **polynomials** to approximate other classes of functions.

Theorem (Weierstrass Approximation Theorem) *If f* \in *C*[*a*, *b*] *and* ϵ > 0 *then there exists a polynomial P such that*

$$
|f(x)-P(x)|<\epsilon,\,\,\text{for all}\,\,x\in[a,b].
$$

▶ We have used **Taylor polynomials** to approximate functions.

$$
P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

 \blacktriangleright Away from x_0 the approximation may be very poor.

Using the two-point formula for a line we determine the equation of the line to be

$$
y = f(x_0) + \left(\frac{f(x_1) - f(x_0)}{x_1 - x_0}\right)(x - x_0).
$$

We can take another approach to finding the linear approximation. Define

$$
L_0(x) = \frac{x - x_1}{x_0 - x_1},
$$

$$
L_1(x) = \frac{x - x_0}{x_1 - x_0},
$$

We can take another approach to finding the linear approximation. Define

$$
L_0(x) = \frac{x - x_1}{x_0 - x_1}
$$
, then $L_0(x_0) = 1$ and $L_0(x_1) = 0$.
\n
$$
L_1(x) = \frac{x - x_0}{x_1 - x_0}
$$
,

We can take another approach to finding the linear approximation. Define

$$
L_0(x) = \frac{x - x_1}{x_0 - x_1}
$$
, then $L_0(x_0) = 1$ and $L_0(x_1) = 0$.

$$
L_1(x) = \frac{x - x_0}{x_1 - x_0}
$$
, then $L_1(x_0) = 0$ and $L_1(x_1) = 1$.

We can take another approach to finding the linear approximation. Define

$$
L_0(x) = \frac{x - x_1}{x_0 - x_1}
$$
, then $L_0(x_0) = 1$ and $L_0(x_1) = 0$.
\n
$$
L_1(x) = \frac{x - x_0}{x_1 - x_0}
$$
, then $L_1(x_0) = 0$ and $L_1(x_1) = 1$.

If $f(x)$ is any function then

$$
P_1(x) = f(x_0) L_0(x) + f(x_1) L_1(x)
$$

KORKARA KERKER DAGA

is a linear function which matches $f(x)$ at $x = x_0$ and $x = x_1$.

We can take another approach to finding the linear approximation. Define

$$
L_0(x) = \frac{x - x_1}{x_0 - x_1}
$$
, then $L_0(x_0) = 1$ and $L_0(x_1) = 0$.
\n
$$
L_1(x) = \frac{x - x_0}{x_1 - x_0}
$$
, then $L_1(x_0) = 0$ and $L_1(x_1) = 1$.

If $f(x)$ is any function then

$$
P_1(x) = f(x_0) L_0(x) + f(x_1) L_1(x)
$$

KORKARA KERKER DAGA

is a linear function which matches $f(x)$ at $x = x_0$ and $x = x_1$. We want to extend this idea to higher order polynomials.

Construction of Polynomials

Challenge: given a function $f(x)$, construct a polynomial $P_n(x)$ of degree at most *n* which matches $f(x)$ at $n + 1$ distinct points.

 $\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}$

KORKARA KERKER DAGA

Construction of Polynomials

Challenge: given a function $f(x)$, construct a polynomial $P_n(x)$ of degree at most *n* which matches $f(x)$ at $n + 1$ distinct points.

$$
\{(x_0,f(x_0)), (x_1,f(x_1)), \ldots, (x_n,f(x_n))\}
$$

Strategy: construct $n + 1$ polynomials $L_{n,k}(x)$ of degree *n* with the property that

$$
L_{n,k}(x_i) = \left\{ \begin{array}{ll} 0 & \text{if } k \neq i, \\ 1 & \text{if } k = i \end{array} \right.
$$

KORKARA KERKER DAGA

for $k = 0, 1, 2, \ldots, n$.

Lagrange Basis Polynomials

Definition

Suppose $\{x_0, x_1, \ldots, x_n\}$ is a set of $n + 1$ distinct points. A **Lagrange Basis Polynomial** is a polynomial of degree *n* having the form

$$
L_{n,k}(x)=\prod_{\substack{i=0\\i\neq k}}^n\frac{x-x_i}{x_k-x_i}.
$$

KORKARA KERKER DAGA

Lagrange Basis Polynomials

Definition

Suppose $\{x_0, x_1, \ldots, x_n\}$ is a set of $n + 1$ distinct points. A **Lagrange Basis Polynomial** is a polynomial of degree *n* having the form

$$
L_{n,k}(x)=\prod_{\substack{i=0\\i\neq k}}^n\frac{x-x_i}{x_k-x_i}.
$$

KORK ERKER ADAM ADA

Remarks:

▶ We will let $k = 0, 1, 2, ..., n$.

$$
L_{n,k}(x_i) = 1 \text{ for } i = k.
$$

$$
\blacktriangleright L_{n,k}(x_i) = 0 \text{ for } i \neq k.
$$

If $x_i = i$ for $i = 0, 1, 2$ then we can create three different Lagrange Basis Polynomials.

K ロ X (日) X 제공 X 제공 X 기능 및 X 이익(N)

 $L_{2,0}(x) =$ $L_{2,1}(x) =$ $L_{2,2}(x) =$

If $x_i = i$ for $i = 0, 1, 2$ then we can create three different Lagrange Basis Polynomials.

$$
L_{2,0}(x) = \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} = \frac{1}{2}(x-1)(x-2)
$$

\n
$$
L_{2,1}(x) =
$$

\n
$$
L_{2,2}(x) =
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

If $x_i = i$ for $i = 0, 1, 2$ then we can create three different Lagrange Basis Polynomials.

$$
L_{2,0}(x) = \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} = \frac{1}{2}(x-1)(x-2)
$$

\n
$$
L_{2,1}(x) = \frac{x-0}{1-0} \cdot \frac{x-2}{1-2} = x(2-x)
$$

\n
$$
L_{2,2}(x) =
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

If $x_i = i$ for $i = 0, 1, 2$ then we can create three different Lagrange Basis Polynomials.

$$
L_{2,0}(x) = \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} = \frac{1}{2}(x-1)(x-2)
$$

\n
$$
L_{2,1}(x) = \frac{x-0}{1-0} \cdot \frac{x-2}{1-2} = x(2-x)
$$

\n
$$
L_{2,2}(x) = \frac{x-0}{2-0} \cdot \frac{x-1}{2-1} = \frac{1}{2}x(x-1)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q @

Graph

$$
L_{2,0}(x) = \frac{1}{2}(x-1)(x-2)
$$

\n
$$
L_{2,1}(x) = x(2-x)
$$

\n
$$
L_{2,2}(x) = \frac{1}{2}x(x-1)
$$

イロト イ団 トイミト イミト \equiv 990

If $n = 9$ and the nodes are $\{0, 1, \ldots, 9\}$ then $L_{9,4}(x)$ has a graph resembling the following.

(ロトメ部) (文書) (文書)

 \Rightarrow

 299

Lagrange Interpolating Polynomials

Definition

Let $\{x_0, x_1, \ldots, x_n\}$ be a set of $n + 1$ distinct points at which the function *f*(*x*) is defined. The (unique) **Lagrange Interpolating Polynomial** of *f*(*x*) of degree *n* is the polynomial having the form

$$
P_n(x)=\sum_{k=0}^n f(x_k)L_{n,k}(x).
$$

KORK ERKER ADAM ADA

Properties:

\n- $$
L_{n,k}(x_i) = 0
$$
 for all $i \neq k$.
\n- $L_{n,k}(x_k) = 1$.
\n- $P(x_k) = f(x_k)$ for $k = 0, 1, \ldots, n$.
\n

Example (1 of 4)

Let $f(x) = \sin x$, $n = 3$, and $x_k = \frac{k\pi}{3}$ for $k = 0, 1, 2, 3$. The four Lagrange Basis Polynomials are listed below.

$$
L_{3,0}(x) = \frac{x - \frac{\pi}{3}}{0 - \frac{\pi}{3}} \cdot \frac{x - \frac{2\pi}{3}}{0 - \frac{2\pi}{3}} \cdot \frac{x - \pi}{0 - \pi}
$$

\n
$$
= \frac{1}{2\pi^3} (\pi - 3x)(2\pi - 3x)(\pi - x)
$$

\n
$$
L_{3,1}(x) = \frac{9}{2\pi^3} x(2\pi - 3x)(\pi - x)
$$

\n
$$
L_{3,2}(x) = -\frac{9}{2\pi^3} x(\pi - 3x)(\pi - x)
$$

\n
$$
L_{3,3}(x) = \frac{1}{2\pi^3} x(\pi - 3x)(2\pi - 3x)
$$

Example (2 of 4)

The Lagrange Interpolating Polynomial of degree 3 for $f(x) = \sin x$ and $x_k = k\pi/3$ for $k = 0, 1, 2, 3$ is

$$
P_3(x) = (\sin 0) L_{3,0}(x) + (\sin \frac{\pi}{3}) L_{3,1}(x) + (\sin \frac{2\pi}{3}) L_{3,2}(x)
$$

+ $(\sin \pi) L_{3,3}(x)$
= $\frac{\sqrt{3}}{2} \cdot \frac{9}{2\pi^3} x(2\pi - 3x)(\pi - x) - \frac{\sqrt{3}}{2} \cdot \frac{9}{2\pi^3} x(\pi - 3x)(\pi - x)$
= $\frac{9\sqrt{3}}{4\pi^2} x(\pi - x)$

Example (3 of 4)

The graphs of $P_3(x)$ and sin *x*.

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Example (4 of 4)

The graph of $|P_3(x) - \sin x|$.

x

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Lagrange Polynomial with Error Term

Theorem

*Suppose x*0*, x*1*, . . . , xⁿ are distinct numbers in the interval* [*a*, *b*] *and suppose f* ∈ C*ⁿ*+¹ [*a*, *b*]*. Then for each x* ∈ [*a*, *b*] *there exists a number* $z(x) \in (a, b)$ *for which*

$$
f(x) = P_n(x) + \frac{f^{(n+1)}(z(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n),
$$

KORK ERKER ADAM ADA

where Pn(*x*) *is the Lagrange Interpolating Polynomial.*

Proof (1 of 3)

Define the function Λ(*t*) as follows:

$$
\Lambda(t)=(P_n(x)-f(x))\frac{(t-x_0)(t-x_1)\cdots(t-x_n)}{(x-x_0)(x-x_1)\cdots(x-x_n)}.
$$

K ロ X x (日 X X B X X B X X B X O Q O

Proof (1 of 3)

Define the function Λ(*t*) as follows:

$$
\Lambda(t)=(P_n(x)-f(x))\frac{(t-x_0)(t-x_1)\cdots(t-x_n)}{(x-x_0)(x-x_1)\cdots(x-x_n)}.
$$

Similarly define function *g*(*t*) as

$$
g(t) = P(t) - f(t) - \Lambda(t)
$$

= $(P(t) - f(t)) - (P_n(x) - f(x)) \frac{(t - x_0)(t - x_1) \cdots (t - x_n)}{(x - x_0)(x - x_1) \cdots (x - x_n)}$.

KOXK@XKEXKEX E 1990

Note:

\n- $$
g(x_i) = 0
$$
 for $i = 0, 1, 2, \ldots, n$
\n- $g(t), g'(t), \ldots, g^{(n)}(t)$ are continuous on [a, b]
\n- $g^{(n+1)}(t)$ exists for interval (a, b) .
\n

Proof (2 of 3)

Theorem (Generalized Rolle's)

Suppose $f \in C[a, b]$ *is n times differentiable on* (a, b) *. If f has n* + 1 *distinct roots*

 $a < x_0 < x_1 < \cdots < x_n < b$,

KORKARYKERKE PORCH

then there exists $c \in (x_0, x_n) \subset (a, b)$ *such that* $f^{(n)}(c) = 0$ *.*

Proof (2 of 3)

Theorem (Generalized Rolle's)

Suppose $f \in C[a, b]$ *is n times differentiable on* (a, b) *. If f has n* + 1 *distinct roots*

$$
a\leq x_0
$$

then there exists $c \in (x_0, x_n) \subset (a, b)$ *such that* $f^{(n)}(c) = 0$ *.*

Applying Generalized Rolle's Theorem to function *g*(*t*), there is a $z(x) \in (a, b)$ such that $g^{(n+1)}(z(x)) = 0$.

$$
g^{(n+1)}(z(x)) = P^{(n+1)}(z(x)) - f^{(n+1)}(z(x)) - \Lambda^{(n+1)}(z(x))
$$

\n
$$
0 = 0 - f^{(n+1)}(z(x)) - \Lambda^{(n+1)}(z(x))
$$

\n
$$
f^{(n+1)}(z(x)) = -\Lambda^{(n+1)}(z(x))
$$

KORK ERKER ADAM ADA

Proof (3 of 3)

Function $\Lambda(t)$ is a polynomial of degree $n + 1$ in variable *t*.

$$
\Lambda(t) = \frac{P_n(x) - f(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} [(t - x_0)(t - x_1) \cdots (t - x_n)]
$$

$$
\Lambda^{(n+1)}(t) = \frac{P_n(x) - f(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} (n+1)!
$$

K ロ X x (日 X X B X X B X X B X O Q O

Proof (3 of 3)

Function Λ(*t*) is a polynomial of degree *n* + 1 in variable *t*.

$$
\Lambda(t) = \frac{P_n(x) - f(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} [(t - x_0)(t - x_1) \cdots (t - x_n)]
$$

$$
\Lambda^{(n+1)}(t) = \frac{P_n(x) - f(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} (n+1)!
$$

$$
f^{(n+1)}(z(x)) = \frac{f(x) - P_n(x)}{(x - x_0)(x - x_1) \cdots (x - x_n)} (n+1)!
$$

$$
f(x) - P_n(x) = \frac{f^{(n+1)}(z(x))}{(n+1)!} (x - x_0)(x - x_1) \cdots (x - x_n)
$$

K ロ X x (日 X X B X X B X X B X O Q O

Comments

▶ Compare the error terms of the Lagrange polynomial and the Taylor polynomial.

Taylor:
$$
\frac{f^{(n+1)}(z(x))}{(n+1)!}(x-x_0)^{n+1}
$$

Lagrange:
$$
\frac{f^{(n+1)}(z(x))}{(n+1)!}(x-x_0)(x-x_1)\cdots(x-x_n)
$$

KORKARYKERKE PORCH

 \blacktriangleright Lagrange polynomials form the basis of many numerical approximations to derivatives and integrals, and thus the error term is important to understanding the errors present in those approximations.

Error in sin *x*

Earlier we found the Lagrange interpolating polynomial of degree 3 for $f(x) = \sin x$ using nodes $x_k = k\pi/3$ for $k = 0, 1, 2, 3$ was

$$
P_3(x)=\frac{9\sqrt{3}}{4\pi^2}x(\pi-x).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

What is an error bound for this approximation?

Error in sin *x*

Earlier we found the Lagrange interpolating polynomial of degree 3 for $f(x) = \sin x$ using nodes $x_k = k\pi/3$ for $k = 0, 1, 2, 3$ was

$$
P_3(x)=\frac{9\sqrt{3}}{4\pi^2}x(\pi-x).
$$

What is an error bound for this approximation?

$$
|R(x)| = \left| \frac{\sin z}{4!} (x - 0) \left(x - \frac{\pi}{3} \right) \left(x - \frac{2\pi}{3} \right) (x - \pi) \right|
$$

\$\leq \frac{1}{24} \max_{0 \leq x \leq \pi} \left| x \left(x - \frac{\pi}{3} \right) \left(x - \frac{2\pi}{3} \right) (x - \pi) \right|\$
= \frac{1.20258}{24} = 0.050108

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Error Bound *vs.* Actual Error

Let $f(x) = e^{\cos(x+1)^2}$ and use the nodes located at

{0, 0.289613, 0.388303, 0.452164, 0.975935, 1}

to find the Lagrange interpolating polynomial of degree at most 5 which interpolates $f(x)$ on the interval [0, 1]. Find an error bound for the interpolation.

Solution

 $P_5(x) = f(0)L_{5,0}(x) + f(0.289613)L_{5,1}(x) + f(0.388303)L_{5,2}(x)$ $+ f(0.452164)L_{5,3}(x) + f(0.975935)L_{5,4}(x) + f(1)L_{5,5}(x)$

4 ロ > 4 何 > 4 ミ > 4 ミ > 1

 299

B

Error Bound

Consider a plot of $f^{(6)}(z)$ on $[0,1]$.

KOD KARD KED KED BE YOUR

Let $g(x) = \cos e^{(x+1)^2}$ and use the nodes located at

{0, 0.289613, 0.388303, 0.452164, 0.975935, 1}

to find the Lagrange interpolating polynomial of degree at most 5 which interpolates $g(x)$ on the interval [0, 1]. Find an error bound for the interpolation.

Solution

 $P_5(x) = g(0)L_{5,0}(x) + g(0.289613)L_{5,1}(x) + g(0.388303)L_{5,2}(x)$ $+ g(0.452164)L_{5,3}(x) + g(0.975935)L_{5,4}(x) + g(1)L_{5,5}(x)$

K ロ ⊁ K @ ⊁ K 경 ⊁ K 경 ⊁ (경)

 299

Error Bound

Consider a plot of $g^{(6)}(z)$ on $[0,1]$.

KOD KARD KED KED BE YOUR

Application

Example

Suppose we are preparing a table of values for cos *x* on $[0, \pi]$. The entries in the table will have eight accurate decimal places and we will linearly interpolate between adjacent entries to determine intermediate values. What should the spacing between adjacent *x*-values be to preserve the eight-decimal-place accuracy in the interpolation?

KORK ERKER ADAM ADA

Solution

$$
|\cos x - P_1(x)| = \left| \frac{-\cos z}{2} \right| |x - x_j||x - x_{j+1}| \text{ for some } 0 \le z \le \pi
$$

$$
\le \frac{1}{2} \max_{0 \le z \le \pi} |\cos z| \cdot \max_{x_j \le x \le x_{j+1}} |x - x_j||x - x_{j+1}|
$$

$$
= \frac{1}{2} \max_{j h \le x \le (j+1)h} |(x - jh)(x - (j+1)h)|
$$

$$
= \frac{h^2}{8}
$$

K ロ X x (日 X X B X X B X X B X O Q O

Thus if $h^2/8 < 10^{-8}$ then $h < 2$ $\sqrt{2}$ × 10⁻⁴ ≈ 0.000282.

Connections with Root Finding

Recall the Secant method: given x_0 and x_1 then

$$
x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}.
$$

▶ The expression $\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$ is the slope of the secant line through $(x_{n-1}, f(x_{n-1}))$ and $(x_n, f(x_n))$. ▶ The expression $\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$ can also be thought of as the derivative of the linear Lagrange interpolating function for *f*(*x*) at

KOD KOD KED KED E VOOR

points $\{(x_{n-1}, f(x_{n-1})), (x_n, f(x_n))\}.$

Connections with Root Finding

Recall the Secant method: given x_0 and x_1 then

$$
x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}.
$$

- ▶ The expression $\frac{f(x_n) f(x_{n-1})}{x_n x_{n-1}}$ is the slope of the secant line through $(x_{n-1}, f(x_{n-1}))$ and $(x_n, f(x_n))$.
- ▶ The expression $\frac{f(x_n) f(x_{n-1})}{x_n x_{n-1}}$ can also be thought of as the derivative of the linear Lagrange interpolating function for *f*(*x*) at points $\{(x_{n-1}, f(x_{n-1})), (x_n, f(x_n))\}.$

A generalization of the Secant method would be **Sidi's method**,

$$
x_{n+1}=x_n-\frac{f(x_n)}{P'_{n,k}(x_n)}
$$

where $P_{n,k}(x)$ is the Lagrange interpolating polynomial passing through

$$
\{(x_{n-k},f(x_{n-k})),(x_{n-k+1},f(x_{n-k+1})),\ldots,(x_n,f(x_n))\}.
$$

KOD KOD KED KED E VOOR

Sidi's Method of degree 3

Find a root of $J_{7/2}(x)$ in the interval [6, 8] using Sidi's method of degree 3 and the four initial approximations at $x \in \{6, 8, 6.5, 7.5\}$. What is the rate of convergence?

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Results

KOXK@XKEXKEX E 1990

Rate of Convergence

Consider the sequence of values of $\frac{|X_{n+1} - X|}{|X_n - X|^\alpha}$ where $x = 6.98793$ for various values of α .

It appears the rate of convergence of Sidi's Method with $k = 3$ is $1 +$ µí 5 $\frac{1}{2} < \alpha < 2$.

Homework

▶ Read Section 3.1

▶ Exercises: 1, 3, 5a, 7a, 13, 17

Kロトメ部トメミトメミト ミニのQC