Newton's Method MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

Motivation

Newton's Method offers superior performance in root finding over the Bisection Method and *ad hoc* fixed-point methods.

We will take the approach of deriving Newton's Method using Taylor's Theorem.

Assumptions:

- ▶ Suppose $f \in C^2[a, b]$ with f(p) = 0 for some $p \in (a, b)$.
- ▶ Let $p_0 \in [a, b]$ with $f'(p_0) \neq 0$.

Assumptions:

- ▶ Suppose $f \in C^2[a, b]$ with f(p) = 0 for some $p \in (a, b)$.
- ▶ Let $p_0 \in [a, b]$ with $f'(p_0) \neq 0$.

$$f(x) = f(p_0) + f'(p_0)(x - p_0) + \frac{f''(z(x))}{2}(x - p_0)^2$$

(z(x) between x and p_0)

Assumptions:

- ▶ Suppose $f \in C^2[a, b]$ with f(p) = 0 for some $p \in (a, b)$.
- ▶ Let $p_0 \in [a, b]$ with $f'(p_0) \neq 0$.

$$f(x) = f(p_0) + f'(p_0)(x - p_0) + \frac{f''(z(x))}{2}(x - p_0)^2$$

$$(z(x) \text{ between } x \text{ and } p_0)$$

$$f(p) = f(p_0) + f'(p_0)(p - p_0) + \frac{f''(z(p))}{2}(p - p_0)^2$$

$$(z(p) \text{ between } p \text{ and } p_0)$$

Assumptions:

- ▶ Suppose $f \in C^2[a, b]$ with f(p) = 0 for some $p \in (a, b)$.
- ▶ Let $p_0 \in [a, b]$ with $f'(p_0) \neq 0$.

$$f(x) = f(p_0) + f'(p_0)(x - p_0) + \frac{f''(z(x))}{2}(x - p_0)^2$$

$$(z(x) \text{ between } x \text{ and } p_0)$$

$$f(p) = f(p_0) + f'(p_0)(p - p_0) + \frac{f''(z(p))}{2}(p - p_0)^2$$

$$(z(p) \text{ between } p \text{ and } p_0)$$

$$0 = f(p_0) + f'(p_0)\underbrace{(p - p_0)}_{\text{small}} + \frac{f''(z(p))}{2}\underbrace{(p - p_0)^2}_{\text{very small}}$$

$$0 \approx f(p_0) + f'(p_0)(p - p_0)$$

$$p \approx p_0 - \frac{f(p_0)}{f'(p_0)}$$

Iterative Method

Thus if p_0 is an approximation to the root p of function f, then

$$p_1 \equiv p_0 - \frac{f(p_0)}{f'(p_0)}$$

is a "better" approximation to p.

Iterative Method

Thus if p_0 is an approximation to the root p of function f, then

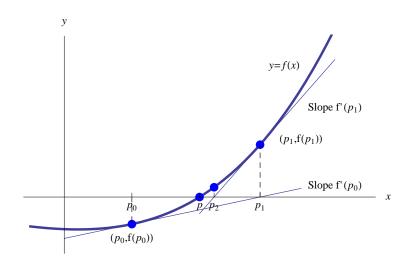
$$p_1 \equiv p_0 - \frac{f(p_0)}{f'(p_0)}$$

is a "better" approximation to p.

Define the sequence $\{p_n\}_{n=0}^{\infty}$ by

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}, \text{ for } n \ge 1.$$

Graphical Interpretation



Algorithm

INPUT initial approximation p_0 , tolerance ϵ , maximum iterations N.

STEP 1 Set i = 1.

STEP 2 While $i \le N$ do STEPS 3–6.

STEP 3 Set
$$p = p_0 - \frac{f(p_0)}{f'(p_0)}$$
.

STEP 4 If $|p - p_0| < \epsilon$ then OUTPUT p, STOP.

STEP 5 Set i = i + 1.

STEP 6 Set $p_0 = p$.

STEP 7 OUTPUT "The method failed after N iterations.", STOP.

Stopping Criteria

Remark: alternative stopping criteria may be used.

- $|p-p_0|<\epsilon$
- $\qquad \left| \frac{p p_0}{p} \right| < \epsilon$
- $ightharpoonup |f(p)| < \epsilon$

Stopping Criteria

Remark: alternative stopping criteria may be used.

- $|p-p_0|<\epsilon$
- $\left| \frac{p p_0}{p} \right| < \epsilon$
- ightharpoonup $|f(p)| < \epsilon$
- Since the convergence of the algorithm is not guaranteed, stopping after a maximum number of iterations can prevent "infinite loops".

Example

Find a root of $x-4\ln x=0$ on interval [1/2,3/2] using $p_0=1$ and $\epsilon=10^{-5}$.

Example

Find a root of $x - 4 \ln x = 0$ on interval [1/2, 3/2] using $p_0 = 1$ and $\epsilon = 10^{-5}$. If $f(x) = x - 4 \ln x$ then $f'(x) = 1 - 4/x \neq 0$ on [1/2, 3/2].

$$n \leftarrow 4 \ln n$$

$$p_n = p_{n-1} - \frac{p_{n-1} - 4 \ln p_{n-1}}{1 - \frac{4}{p_{n-1}}}$$

n	p_n
0	1.00000
1	1.33333
2	1.42464
3	1.42960
4	1.42961

Convergence

Remarks:

- Newton's Method requires the initial approximation p_0 be "reasonably close" to p.
- ▶ If $f'(p_n) = 0$ for any n, the method fails.

Convergence

Remarks:

- Newton's Method requires the initial approximation p_0 be "reasonably close" to p.
- ▶ If $f'(p_n) = 0$ for any n, the method fails.

Theorem

If $f \in \mathcal{C}^2[a,b]$ and if $p \in (a,b)$ is such that f(p)=0 and $f'(p)\neq 0$, then there exists $\delta>0$ such that Newton's Method generates a sequence $\{p_n\}_{n=0}^\infty$ converging to p for any initial approximation $p_0 \in [p-\delta,p+\delta]$.

Proof (1 of 3)

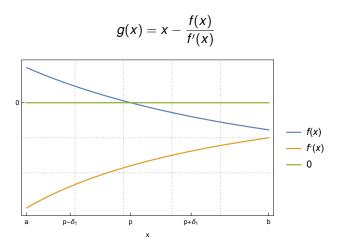
▶ Let
$$g(x) = x - \frac{f(x)}{f'(x)}$$
, then $p_n = g(p_{n-1})$.

▶ Choose $k \in (0, 1)$.

Proof (1 of 3)

- ► Let $g(x) = x \frac{f(x)}{f'(x)}$, then $p_n = g(p_{n-1})$.
- ▶ Choose $k \in (0, 1)$.
- Since f' is continuous and $f'(p) \neq 0$, then there exists $\delta_1 > 0$ such that $f'(x) \neq 0$ for all $x \in [p \delta_1, p + \delta_1] \subseteq [a, b]$. Consequently g(x) is defined and continuous for all $x \in [p \delta_1, p + \delta_1]$.

Illustration



Function g(x) is defined and continuous for all $x \in [p - \delta_1, p + \delta_1]$.

Proof (2 of 3)

$$g(x) = x - \frac{f(x)}{f'(x)}$$

$$g'(x) = 1 - \frac{f'(x) f'(x) - f(x) f''(x)}{[f'(x)]^2}$$

$$= \frac{f(x) f''(x)}{[f'(x)]^2}$$

Proof (2 of 3)

$$g(x) = x - \frac{f(x)}{f'(x)}$$

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$$

$$= \frac{f(x)f''(x)}{[f'(x)]^2}$$

Since $f \in C^2[a, b]$ then $g \in C^1[p - \delta_1, p + \delta_1]$.

$$g'(p) = \frac{f(p) f''(p)}{[f'(p)]^2} = 0$$

Proof (2 of 3)

$$g(x) = x - \frac{f(x)}{f'(x)}$$

$$g'(x) = 1 - \frac{f'(x)f'(x) - f(x)f''(x)}{[f'(x)]^2}$$

$$= \frac{f(x)f''(x)}{[f'(x)]^2}$$

Since $f \in C^2[a, b]$ then $g \in C^1[p - \delta_1, p + \delta_1]$.

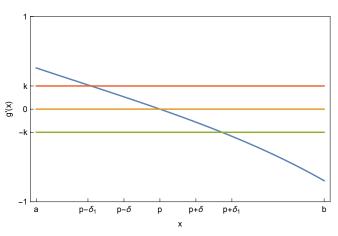
$$g'(p) = \frac{f(p) f''(p)}{[f'(p)]^2} = 0$$

Since g' is continuous there exists $0 < \delta < \delta_1$ such that

$$|g'(x)| \le k < 1$$
, for all $[p - \delta, p + \delta]$.

Illustration

$$g'(x) = \frac{f(x)f''(x)}{(f'(x))^2}$$



$$|g'(x)| \le k < 1$$
, for all $[p - \delta, p + \delta]$.

Proof (3 of 3)

Suppose $x \in [p - \delta, p + \delta]$, by the MVT there is a z between x and p such that

$$\left| \frac{g(x) - g(p)}{x - p} \right| = |g'(z)|$$

$$|g(x) - g(p)| = |g'(z)||x - p|$$

$$|g(x) - p| \le k|x - p|$$

$$< |x - p|$$

Proof (3 of 3)

Suppose $x \in [p - \delta, p + \delta]$, by the MVT there is a z between x and p such that

$$\left| \frac{g(x) - g(p)}{x - p} \right| = |g'(z)|$$

$$|g(x) - g(p)| = |g'(z)||x - p|$$

$$|g(x) - p| \le k|x - p|$$

$$< |x - p|$$

Since $|x - p| < \delta$ then $|g(x) - p| < \delta$, *i.e.*, function g maps the interval $[p - \delta, p + \delta]$ into itself.

Proof (3 of 3)

Suppose $x \in [p - \delta, p + \delta]$, by the MVT there is a z between x and p such that

$$\left| \frac{g(x) - g(p)}{x - p} \right| = |g'(z)|$$

$$|g(x) - g(p)| = |g'(z)| |x - p|$$

$$|g(x) - p| \le k|x - p|$$

$$< |x - p|$$

- ▶ Since $|x p| < \delta$ then $|g(x) p| < \delta$, *i.e.*, function g maps the interval $[p \delta, p + \delta]$ into itself.
- ▶ By the Fixed-Point Theorem applied to g, the sequence $\{p_n\}_{n=0}^{\infty}$ converges to the unique fixed point p.

General Comments

- 1. Convergence of the algorithm is not guaranteed.
- Good initial approximation of the root is often needed for convergence.
- 3. Must evaluate f(x) and f'(x) on each iteration.
- 4. If the root at x = p is not a simple root (e.g., if f'(p) = 0), the convergence can be slow.
- 5. Since $\frac{d}{dx} \left[x \frac{f(x)}{f'(x)} \right]_{x=p} = \frac{f(p)f''(p)}{(f'(p))^2} = 0$, Newton's method converges quadratically.

Multiple Root Issue

Let
$$f(x) = x^2$$
 and $g(x) = x^3$ and $p_0 = 0.5$.

n	$p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$	$p_{n-1} - \frac{g(p_{n-1})}{g'(p_{n-1})}$
1	0.25000	0.33333
2	0.12500	0.22222
3	0.06250	0.14815
4	0.03125	0.09877
5	0.01563	0.06584
6	0.00781	0.04390
7	0.00391	0.02926

Avoiding the Derivative

One drawback of Newton's Method is the need to evaluate the derivative $f'(p_{n-1})$ in addition to evaluating $f(p_{n-1})$.

Avoiding the Derivative

One drawback of Newton's Method is the need to evaluate the derivative $f'(p_{n-1})$ in addition to evaluating $f(p_{n-1})$.

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

$$\approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}}$$

$$= \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

Avoiding the Derivative

One drawback of Newton's Method is the need to evaluate the derivative $f'(p_{n-1})$ in addition to evaluating $f(p_{n-1})$.

$$f'(p_{n-1}) = \lim_{x \to p_{n-1}} \frac{f(x) - f(p_{n-1})}{x - p_{n-1}}$$

$$\approx \frac{f(p_{n-2}) - f(p_{n-1})}{p_{n-2} - p_{n-1}}$$

$$= \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

Substitute into the Newton's Method Formula to obtain

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

known as the Secant Method.

Algorithm: Secant Method

INPUT initial approximations p_0 , p_1 , tolerance ϵ , maximum iterations N.

STEP 1 Set
$$i = 2$$
; $q_0 = f(p_0)$; $q_1 = f(p_1)$.

STEP 2 While $i \le N$ do STEPS 3–6.

STEP 3 Set
$$p = p_1 - \frac{q_1(p_1 - p_0)}{q_1 - q_0}$$
.

STEP 4 If $|p - p_1| < \epsilon$ then OUTPUT p, STOP.

STEP 5 Set i = i + 1.

STEP 6 Set $p_0 = p_1$; $q_0 = q_1$; $p_1 = p$; $q_1 = f(p)$.

STEP 7 OUTPUT "The method failed after N iterations.", STOP.

Example

Use the Secant Method to approximate a solution to $x-4 \ln x=0$ using $p_0=1$ and $p_1=1.5$.

Secant				
n	p_n			
0	1.00000			
1	1.50000			
2	1.44569			
3	1.42962			
4	1.42961			

Example

Use the Secant Method to approximate a solution to $x-4 \ln x=0$ using $p_0=1$ and $p_1=1.5$.

Secant			Newton	
n	p_n	-	n	p _n
0	1.00000	-	0	1.00000
1	1.50000		1	1.33333
2	1.44569		2	1.42464
3	1.42962		3	1.42960
4	1.42961	_	4	1.42961

Remarks

► The Secant Method requires two initial approximations to the root of an equation.

Remarks

- ► The Secant Method requires two initial approximations to the root of an equation.
- ► The Secant Method is generally slower to converge to the root than Newton's Method.

Remarks

- The Secant Method requires two initial approximations to the root of an equation.
- The Secant Method is generally slower to converge to the root than Newton's Method.
- ▶ The Secant Method is faster to converge than the Bisection Method, but the Bisection Method insures that the root p always lies between two successive approximations p_{n-1} and p_n . Either

$$p_{n-1}$$

This is not true of Newton's Method or the Secant Method.

Remarks

- The Secant Method requires two initial approximations to the root of an equation.
- The Secant Method is generally slower to converge to the root than Newton's Method.
- ▶ The Secant Method is faster to converge than the Bisection Method, but the Bisection Method insures that the root p always lies between two successive approximations p_{n-1} and p_n . Either

$$p_{n-1}$$

This is not true of Newton's Method or the Secant Method.

▶ The Secant Method can be modified to bracket the root.

Algorithm: False Position

```
INPUT initial approximations p_0, p_1, tolerance \epsilon, maximum iterations N.

STEP 1 Set i=2; q_0=f(p_0); q_1=f(p_1).

STEP 2 While i\leq N do STEPS 3–7.

STEP 3 Set p=p_1-\frac{q_1(p_1-p_0)}{q_1-q_0}.

STEP 4 If |p-p_1|<\epsilon then OUTPUT p, STOP. STEP 5 Set i=i+1; q=f(p).

STEP 6 If q\cdot q_1<0 set p_0=p_1; q_0=q_1.

STEP 7 Set p_1=p; q_1=q.
```

STEP 8 OUTPUT "The method failed after N iterations.", STOP.

Example

Use the Method of False Position approximate a solution to $x - 4 \ln x = 0$ using $p_0 = 1$ and $p_1 = 1.5$.

False Position

i aise Fositioni			
n	p _n		
0	1.00000		
1	1.50000		
2	1.44569		
3	1.43327		
4	1.43045		
5	1.42980		
6	1.42965		
7	1.42962		
8	1.42961		

Example

Use the Method of False Position approximate a solution to $x - 4 \ln x = 0$ using $p_0 = 1$ and $p_1 = 1.5$.

False Position			Secant	
n	p_n			
0	1.00000			
1	1.50000	n	p _n	
2	1.44569	0	1.00000	
3	1.43327	1	1.50000	
4	1.43045	2	1.44569	
5	1.42980	3	1.42962	
6	1.42965	4	1.42961	
7	1.42962	-		
8	1.42961			

Uniqueness of Order of Convergence Lemma

The order of convergence of a sequence is unique.

Uniqueness of Order of Convergence

Lemma

The order of convergence of a sequence is unique.

Proof.

Suppose $\lim_{n \to \infty} \alpha_n = \alpha$ and there exist $0 and positive constants <math>\lambda$ and μ such that

$$\lim_{n\to\infty}\frac{|\alpha_{n+1}-\alpha|}{|\alpha_n-\alpha|^p}=\lambda \text{ and } \lim_{n\to\infty}\frac{|\alpha_{n+1}-\alpha|}{|\alpha_n-\alpha|^q}=\mu.$$

Consider the limit

$$\lim_{n \to \infty} \frac{|\alpha_{n+1} - \alpha|}{|\alpha_n - \alpha|^p} = \lim_{n \to \infty} \frac{|\alpha_{n+1} - \alpha|}{|\alpha_n - \alpha|^q |\alpha_n - \alpha|^{p-q}}$$

$$= \lim_{n \to \infty} \frac{|\alpha_{n+1} - \alpha|}{|\alpha_n - \alpha|^q} \lim_{n \to \infty} \frac{1}{|\alpha_n - \alpha|^{p-q}}$$

$$= \mu \lim_{n \to \infty} |\alpha_n - \alpha|^{q-p}$$

$$= \mu(0) = 0,$$

a contradiction.

Rate of Convergence of Secant Method (1 of 5)

Suppose p is a root of the equation f(x) = 0 and $f'(p) \neq 0 \neq f''(p)$ and f'''(x) exists in an open interval containing p.

Secant method:
$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

Let $\{x_n\}_{n=0}^{\infty}$ be the sequence generated by the Secant method where $\lim_{n\to\infty}x_n=p$. Define $e_n=x_n-p$.

$$x_{n+1} = e_{n+1} + p = e_n + p - \frac{f(p + e_n)(p + e_n - p - e_{n-1})}{f(p + e_n) - f(p + e_{n-1})}$$

$$e_{n+1} = e_n - \frac{f(p + e_n)(e_n - e_{n-1})}{f(p + e_n) - f(p + e_{n-1})}$$

Expand f(x) as a Taylor polynomial about p.

$$f(x) = f(p) + f'(p)(x - p) + \frac{f''(p)}{2}(x - p)^2 + \frac{f'''(z)}{6}(x - p)^3$$

Rate of Convergence of Secant Method (2 of 5)

Replace f by its Taylor polynomial expansion.

$$\begin{array}{lll} e_{n+1} & = & e_n - \frac{f(p+e_n)(e_n-e_{n-1})}{f(p+e_n)-f(p+e_{n-1})} \\ & = & e_n - (e_n-e_{n-1}) \frac{f'(p)e_n + \frac{f''(p)}{2}e_n^2 + O(e_n^3)}{f'(p)e_n + \frac{f''(p)}{2}e_n^2 + O(e_n^3) - f'(p)e_{n-1} - \frac{f''(p)}{2}e_{n-1}^2 - O(e_{n-1}^3)} \\ & = & e_n - (e_n-e_{n-1}) \frac{e_n + \frac{f''(p)}{2f'(p)}e_n^2 + O(e_n^3)}{e_n + \frac{f''(p)}{2f'(p)}e_n^2 + O(e_n^3) - e_{n-1} - \frac{f''(p)}{2f'(p)}e_{n-1}^2 - O(e_{n-1}^3)} \\ & = & e_n - (e_n-e_{n-1}) \frac{e_n + \frac{f''(p)}{2f'(p)}e_n^2 + O(e_n^3)}{(e_n-e_{n-1}) + \frac{f''(p)}{2f'(p)}(e_n^2-e_{n-1}^2) + O(e_n^3) - O(e_{n-1}^3)} \\ & = & e_n - \frac{e_n + \frac{f''(p)}{2f'(p)}e_n^2 + O(e_n^3)}{1 + (e_n+e_{n-1})\frac{f''(p)}{2f'(p)} + \frac{O(e_n^3) - O(e_{n-1}^3)}{e_n-e_{n-1}}} \end{array}$$

Since $e_k \to 0$ as $k \to \infty$ the expression $O(e_{n-1}^3)$ dominates $O(e_n^3)$.

Rate of Convergence of Secant Method (3 of 5)

$$e_{n+1} = e_n - \frac{e_n + \frac{f''(p)}{2f'(p)}e_n^2 + O(e_n^3)}{1 + (e_n + e_{n-1})\frac{f''(p)}{2f'(p)} - \frac{O(e_{n-1}^3)}{e_n - e_{n-1}}}$$

$$= \frac{e_n \left(1 + (e_n + e_{n-1})\frac{f''(p)}{2f'(p)} - \frac{O(e_{n-1}^3)}{e_n - e_{n-1}}\right) - e_n - \frac{f''(p)}{2f'(p)}e_n^2 - O(e_n^3)}{1 + (e_n + e_{n-1})\frac{f''(p)}{2f'(p)} - \frac{O(e_{n-1}^3)}{e_n - e_{n-1}}}$$

$$= \frac{e_n e_{n-1}\frac{f''(p)}{2f'(p)} - O(e_{n-1}^3)\frac{e_n}{e_n - e_{n-1}} - O(e_n^3)}{1 + (e_n + e_{n-1})\frac{f''(p)}{2f'(p)} - \frac{O(e_{n-1}^3)}{e_n - e_{n-1}}}$$

Suppose the order of convergence of $\{x_n\}_{n=0}^{\infty}$ is α , then

$$\lim_{n\to\infty}\frac{|\rho-x_{n+1}|}{|\rho-x_n|^\alpha}=\lim_{n\to\infty}\frac{|e_{n+1}|}{|e_n|^\alpha}=\lambda\neq 0.$$

Rate of Convergence of Secant Method (4 of 5)

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}} = \lim_{n \to \infty} \left| \frac{e_n^{1-\alpha} e_{n-1} \frac{f''(p)}{2f'(p)} - O(e_{n-1}^3) \frac{e_n^{1-\alpha}}{e_n - e_{n-1}} - O(e_n^{3-\alpha})}{1 + (e_n + e_{n-1}) \frac{f''(p)}{2f'(p)} - \frac{O(e_{n-1}^3)}{e_n - e_{n-1}}} \right|$$

$$= \lambda \neq 0$$

Since $\lim_{n\to\infty}e_n=\lim_{n\to\infty}e_{n-1}=0$ then it must be the case that $\lim_{n\to\infty}|e_n^{1-\alpha}e_{n-1}|$ converges to a positive value, say C>0.

$$C = \lim_{n \to \infty} |e_n^{1-\alpha} e_{n-1}|$$

$$C = \lim_{n \to \infty} |e_{n+1}^{1-\alpha} e_n|$$

$$C^{\frac{1}{1-\alpha}} = \lim_{n \to \infty} \left|e_{n+1} e_n^{\frac{1}{1-\alpha}}\right|$$

$$C^{\frac{1}{1-\alpha}} = \lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{1/(\alpha-1)}}$$

which implies the rate of convergence is $O(e_n^{1/(\alpha-1)})$.

Rate of Convergence of Secant Method (5 of 5)

Since the rate of convergence of a sequence is unique then,

$$\alpha = \frac{1}{\alpha - 1}$$

$$^{2} - \alpha - 1 = 0$$

$$\alpha = \frac{1 + \sqrt{5}}{2}$$

$$\approx 1.61803.$$

Homework

- ► Read Section 2.3.
- Exercises: 5, 7, 17, 19, 23, 27