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Objectives

» We discussed direct techniques for solving linear systems in
Chapter 6.

» In Chapter 7 we will discuss iterative techniques for solving linear
systems.

» We have seen iterative methods before when we discussed fixed
point methods (notably Newton’s method) for solving scalar
equations.

» Today we will explore ways of measuring the distance between
vectors and also matrices.



Vector Norm

Definition
A vector norm on R” is a function denoted || - || from R” — R with the

following properties:
1. ||x|| > 0 for all x € R".
2. ||x|] = 0if and only if x = 0.
3. |lax]|| = |af||x| for all « € R and for all x € R".
4. x4yl < x|l + [yl for all x, y € R".

Remark: the last property is called the triangle inequality.



Euclidean Norm

There are several functions which possess the four properties of a
vector norm.

Definition
The b-norm of x € R" is defined as

N 1/2
Xl = (z) |
k=1

This is also called the Euclidean norm.



Euclidean Norm

There are several functions which possess the four properties of a
vector norm.

Definition
The b-norm of x € R" is defined as

N 1/2
Xl = (z) |
k=1

This is also called the Euclidean norm.

Definition
The I.-norm of x € R" is defined as

= Xk |-
IXlloo = max_ [Xk]



lp-Norm

Definition
For p > 1 the J,-norm of x € R" is defined as

n 1/p
BPES (Z |Xk|p> :
k=1
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Example

Letx = (1,—2,1/2) and find



Example

Letx = (1,—2,1/2) and find
> Il = A2+ (22 4 (1722 = 2
> [l




Example

Letx = (1,—2,1/2) and find
> xllo = /124 (-2)2 + (1/2)7 = 44
> X[l = maxi<kea{[1],| - 2], [1/2]} = 2




Example

Letx = (1,—2,1/2) and find
> xllo = /124 (-2)2 + (1/2)7 = 44
> X[l = maxi<kea{[1],| - 2], [1/2]} = 2

Sketch the vectors in R? for which
> [x[l2 <1,
> [[X[oo < 1.
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Cauchy-Schwarz Inequality

Theorem
Forallx,y € R",

. , 12 , 12
Xy =D Xy =Xy < <Z X,-2> (Zﬁ) = [Ix[l2]ly|l2-
k=1

k=1 k=1



Proof (1 of 2)

> If x = 0 ory = 0 the result is trivially true, so suppose x # 0 and
y #0.



Proof (1 of 2)

> If x = 0 ory = 0 the result is trivially true, so suppose x # 0 and

y#0.
> Let A € Rthen

0 < |x—2yl
n
= ) (% — Ayk)?
k=1
n

= D (X — 2\Xkyk + N2yF)
k=1



Proof (1 of 2)
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0 < D> xE—22) X+ N> yE
k=1 pa k=1



Proof (1 of 2)

> If x = 0 ory = 0 the result is trivially true, so suppose x # 0 and

y#0.
> Let A € Rthen

0 < [x—2yl3

n

= > (%= A)?
k=1
n

= D (X — 2\Xkyk + N2yF)
k=1

n n n
0 < D> xE—22) X+ N> yE
k=1 pa k=1

n n n
2AD Xk < D XE XD ¥R
k=1 k=1 pa



Proof (2 of 2)

Suppose A = Ixll2 then

I¥ll2

n n n
2>\ZXkYk < ZX,er/\zZyE
k=1 = k=1



Proof (2 of 2)
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Suppose A = then
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Proof (2 of 2)

[Ixll2
[lyll2
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2AZxkyk < Y RHND yE
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o < e ()
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= 2x|i

Suppose A = then



Proof (2 of 2)
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Distance

Definition
If X, y € R" the h-distance between x and y is

n 1/2
X —yll2 = (Z(Xk - Yk)2> '
k=1

The /.-distance between x and y is

X =Y = 12;2("')(" — Ykl-



Distance

Definition
If X, y € R" the h-distance between x and y is

n 1/2

X —yll2 = (Z(Xk - Yk)2> '
k=1

The /.-distance between x and y is

[X =Yoo = max |xic — ykl-

1<k<n
Definition
A sequence of vectors {x k)} iy in R" is said to converge to vector x
with respect to norm || - || if given € > 0, there exists N € N such that

|x(%) — x|| < e forall k > N.



Example

Suppose the solution to a linear system is x = (1, —2, 3) and by
Gaussian elimination and back-substitution we approximate the
solution by X = (0.9, —1.99,2.95).

Find:
> [x — X[

> [fx =Xl



Example

Suppose the solution to a linear system is x = (1, —2, 3) and by
Gaussian elimination and back-substitution we approximate the
solution by X = (0.9, —1.99,2.95).
Find:
> X —X|2=+1/(1-09)2+ (-2~ (-1.99))2 + (3 —2.95)2 =
0.11225
> X = Xloo




Example

Suppose the solution to a linear system is x = (1, —2, 3) and by
Gaussian elimination and back-substitution we approximate the
solution by X = (0.9, —1.99,2.95).
Find:
> X —X|2=+1/(1-09)2+ (-2~ (-1.99))2 + (3 —2.95)2 =
0.11225
> |[X —X||oo = maxy<k<3{|1—0.9|,|—2—(—1.99),|3—-2.95|} = 0.1




Convergence Result

Theorem
The sequence of vectors {x(")}ii1 converges to x € R" with respect
to || - || if and only if

(k)

klim X =x; fori=1,2,....n.
— 00



Convergence Result

Theorem

The sequence of vectors { x(k) };“;1 converges to x € R" with respect
to || - || if and only if

klim x,.(k) =x fori=1,2,...,n.
— 00

Proof.
> Suppose {x(}°  converges to x with respect to || - ||oc.
» Given ¢ > 0 there exists N € N such that for all k > N

max |x(®) — x,-’ = [x®) — x| < e
1<i<n
» This implies x,.(k) —xj| <efori=1,2,..., nwhichimplies
limg_s o0 x,.(k) =xjfori=1,2,...,n.



Proof

» Suppose limg_ o x( =x;fori=1,2,.
> Given e > 0 let N; be a positive mteger Wlth the property that
x < ewhen k > N;.

i X

» Define N = maxi<;j<p{N;}, then if k > N we have

x x,‘ = [|x) — x||oo < €

max i

1<i<n

> This implies x*) — x with respect to norm || - || o



Example

Let x(K) = <2(7 —s';kj + co;k> and find

lim x(

k— o0



Example

Let x(K) = <2(7 —s';kj + co;k> and find

lim x%) =(0,0,1).

k— o0



Equivalence of Norms

Theorem
For all x € R" we have ||X||« < [|X]2 < v/N||X]|so-



Equivalence of Norms

Theorem
For all x € R" we have ||X||« < [|X]2 < v/N||X]|so-

> Let x; be the component of x such that ||X| . = |X;|.

n
X3 = xi* = x? < > xg = |IxII3
k=1

Hence [|X||so < ||X||2-
» Note that

2
Iz = ZXE S = nx? = n||x|%,.

Hence ||x||2 < v/N||X]|0o-
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Matrix Norm

Definition
A matrix norm on R"*" s a real-valued function || - || satisfying for all
matrices A, B € R and for all « € R:

1. [|A] >0

2. ||A| =0ifandonly if A= 0"*"

3. lla Al = [al Al

4. |A+ Bl < [|Al + 8]

5. |AB| < ||A]|B]



Matrix Norm

Definition
A matrix norm on R"*" s a real-valued function || - || satisfying for all
matrices A, B € R and for all « € R:

1. [|A] >0

2. ||A| =0ifandonly if A= 0"*"

3. lla Al = [al Al

4. |A+ Bl < [|Al + 8]

5. |AB| < ||Al|B]

Remark: the distance between A and B with respect to the matrix
normis ||A — Bj|.



Induced Norms

Theorem
If]| - || is a vector norm on R" then

[All = max [|AxX|
Ix|=1

is a matrix norm.

Remark: this is a matrix norm induced by the vector norm.



Induced Norms

Theorem
If]| - || is a vector norm on R" then

[All = max [|AxX|
Ix|=1

is a matrix norm.

Remark: this is a matrix norm induced by the vector norm.

Corollary
For any vectorz # 0, matrix A and norm || - || we have | Az|| < || Al ||z]|-



Proof

> If z £ 0 then z/||z|| is a unit vector.
» Using the induced norm on matrix A we have

z
2]

1Al

max ||AX|| = max
lIx]|=1 llzll#0

‘: " 1Az||
lzl#0 ||Z||



Proof

> If z £ 0 then z/||z|| is a unit vector.
» Using the induced norm on matrix A we have

‘ Az
HEEIN

z
2]

= [IAIl

max ||AX|| = max
lIx]|=1 llzll#0

» Therefore,
Az

1Azl = =7

2]} = [|Az]-



Comments

Using the k- and /,-norms (for vectors) we have induced norms (for
matrices) of

1All = max_[lAx]l2
1Alloo = max_ [ Ax]loc.



Comments

Using the k- and /,-norms (for vectors) we have induced norms (for
matrices) of

1All = max_[lAx]l2

1Alloo = max_ [ Ax]loc.

The norm of a matrix is the maximum “stretch” it gives to a unit vector.



Example: hL-norm

Consider the matrix
1 4
a7 2]

and the h-norm on RR2.




Example: [-norm

Consider the matrix
1 4
a7 2]

and the I,-norm on R2.




Infinity Norm of Matrices

Theorem
If A e R™" then .
[Alloe = max > |8y
j=1
in other words, the oo-norm of A is the row with the largest summed
magnitudes.



Proof (1 of 4)

> Let x € R” with ||X||lc = 1.

[AX[[oo = max |(Ax);|

1<i<n

= maXx
1<i<n

n
> %
j=1




Proof (1 of 4)

> Let x € R” with ||X||lc = 1.
Ax = AX);
14Xl = max |(AX)
n

n

12,‘-2(”2 |aj! ||
]:

n
aj Xi| ).
(1"2%”.2 ,,|) (1m0

J=1

IN

IN



Proof (2 of 4)
» Since ||X||oc = 1 then max |x;| =1 and
1<j<n

n
<
1A < @%xnzlaul
]:



Proof (2 of 4)
» Since ||X||oc = 1 then max |x;| =1 and
1<j<n

n
<
1A < @%xnglaul

» Thus

n
[Aleo = max_[|AX]jeo < max > lail.
Il 1272n &



Proof (2 of 4)
» Since ||X||oc = 1 then max |x;| =1 and
1<j<n

n
<
1A < @%xnglaul

» Thus

n
Al = max 4K < max 3 ]

> Letpe {1,2,...,n} be such that

n
/21:|3p/'| = Z|au|



Proof (3 of 4)

» Define x ¢ R" as

wo{ 1ia;=0,

Then ||X||cc = 1.



Proof (3 of 4)

» Define x ¢ R" as

wo{ 1ia;=0,

Then ||X||cc = 1.
» Therefore ayx; = |ay| forj=1,2,...,nand

n
[AX][oe = > aix
j=1

max
1<i<n




Proof (3 of 4)

» Define x ¢ R" as

1 ifa, >0,
Xj = .
Then ||X||cc = 1.
» Therefore ayx; = |ay| forj=1,2,...,nand

IAX||cc = max
1<i<n

z ajjX;

v

n
Z |ap|
j=1

n
> apxj| =
=1

= a
JL%Z' il




Proof (4 of 4)

Thus we have shown that

max Z laj] < || Al < [max Z ||

1<i<

which implies
n

1Al = max > |ay.

1<i<n
j=1



Proof (4 of 4)

Thus we have shown that

max. Z @] < Al < max Z 2]
which implies

[Alloc = max Z |-

1<i<n
Example
1 3 2
LetA=| -4 0 1 | andfind
5 0 2

Al



Proof (4 of 4)

Thus we have shown that

max. Z @] < Al < max Z 2]
which implies

[Alloc = max Z |-

1<i<n
Example
1 3 2
LetA=| -4 0 1 | andfind
5 0 2

[Alloe = 7.



Homework

» Read Section 7.1.
» Exercises: 1, 3,4, 5, 13



