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Objectives

▶ We discussed direct techniques for solving linear systems in
Chapter 6.

▶ In Chapter 7 we will discuss iterative techniques for solving linear
systems.

▶ We have seen iterative methods before when we discussed fixed
point methods (notably Newton’s method) for solving scalar
equations.

▶ Today we will explore ways of measuring the distance between
vectors and also matrices.



Vector Norm

Definition
A vector norm on Rn is a function denoted ∥ · ∥ from Rn → R with the
following properties:

1. ∥x∥ ≥ 0 for all x ∈ Rn.
2. ∥x∥ = 0 if and only if x = 0.
3. ∥α x∥ = |α| ∥x∥ for all α ∈ R and for all x ∈ Rn.
4. ∥x + y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ Rn.

Remark: the last property is called the triangle inequality.



Euclidean Norm

There are several functions which possess the four properties of a
vector norm.

Definition
The l2-norm of x ∈ Rn is defined as

∥x∥2 =

(
n∑

k=1

x2
k

)1/2

.

This is also called the Euclidean norm.

Definition
The l∞-norm of x ∈ Rn is defined as

∥x∥∞ = max
1≤k≤n

|xk |.
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lp-Norm
Definition
For p ≥ 1 the lp-norm of x ∈ Rn is defined as

∥x∥p =

(
n∑

k=1

|xk |p
)1/p

.
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Example

Let x = ⟨1,−2,1/2⟩ and find

▶ ∥x∥2

=
√

12 + (−2)2 + (1/2)2 =
√

21
2

▶ ∥x∥∞

= max1≤k≤3{|1|, | − 2|, |1/2|} = 2

Sketch the vectors in R2 for which
▶ ∥x∥2 ≤ 1,
▶ ∥x∥∞ ≤ 1.
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Solution
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Cauchy-Schwarz Inequality

Theorem
For all x, y ∈ Rn,

xty =
n∑

k=1

xk yk = x · y ≤

(
n∑

k=1

x2
i

)1/2( n∑
k=1

y2
i

)1/2

= ∥x∥2∥y∥2.



Proof (1 of 2)

▶ If x = 0 or y = 0 the result is trivially true, so suppose x ̸= 0 and
y ̸= 0.

▶ Let λ ∈ R then

0 ≤ ∥x − λy∥2
2

=
n∑

k=1

(xk − λyk )
2

=
n∑

k=1

(x2
k − 2λxk yk + λ2y2

k )

0 ≤
n∑

k=1

x2
k − 2λ

n∑
k=1

xk yk + λ2
n∑

k=1

y2
k

2λ
n∑

k=1

xk yk ≤
n∑

k=1

x2
k + λ2

n∑
k=1

y2
k .
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Proof (2 of 2)

Suppose λ =
∥x∥2

∥y∥2
then

2λ
n∑

k=1

xk yk ≤
n∑

k=1

x2
k + λ2

n∑
k=1

y2
k

2
∥x∥2

∥y∥2

n∑
k=1

xk yk ≤ ∥x∥2
2 +

(
∥x∥2

∥y∥2

)2

∥y∥2
2

= 2∥x∥2
2
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Distance

Definition
If x, y ∈ Rn the l2-distance between x and y is

∥x − y∥2 =

(
n∑

k=1

(xk − yk )
2

)1/2

.

The l∞-distance between x and y is

∥x − y∥∞ = max
1≤k≤n

|xk − yk |.

Definition
A sequence of vectors

{
x(k)

}∞
k=1 in Rn is said to converge to vector x

with respect to norm ∥ · ∥ if given ϵ > 0, there exists N ∈ N such that
∥x(k) − x∥ < ϵ for all k ≥ N.
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Example

Suppose the solution to a linear system is x = ⟨1,−2,3⟩ and by
Gaussian elimination and back-substitution we approximate the
solution by x̂ = ⟨0.9,−1.99,2.95⟩.

Find:
▶ ∥x − x̂∥2

=
√

(1 − 0.9)2 + (−2 − (−1.99))2 + (3 − 2.95)2 =
0.11225

▶ ∥x− x̂∥∞

= max1≤k≤3{|1−0.9|, |−2− (−1.99)|, |3−2.95|} = 0.1
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Convergence Result

Theorem
The sequence of vectors

{
x(k)

}∞
k=1 converges to x ∈ Rn with respect

to ∥ · ∥∞ if and only if

lim
k→∞

x (k)
i = xi for i = 1,2, . . . ,n.

Proof.
▶ Suppose

{
x(k)

}∞
k=1 converges to x with respect to ∥ · ∥∞.

▶ Given ϵ > 0 there exists N ∈ N such that for all k ≥ N

max
1≤i≤n

∣∣∣x (k)
i − xi

∣∣∣ = ∥x(k) − x∥∞ < ϵ.

▶ This implies
∣∣∣x (k)

i − xi

∣∣∣ < ϵ for i = 1,2, . . . ,n which implies

limk→∞ x (k)
i = xi for i = 1,2, . . . ,n.
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Proof

▶ Suppose limk→∞ x (k)
i = xi for i = 1,2, . . . ,n.

▶ Given ϵ > 0 let Ni be a positive integer with the property that∣∣∣x (k)
i − xi

∣∣∣ < ϵ when k ≥ Ni .

▶ Define N = max1≤i≤n{Ni}, then if k ≥ N we have

max
1≤i≤n

∣∣∣x (k)
i − xi

∣∣∣ = ∥x(k) − x∥∞ < ϵ.
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Equivalence of Norms

Theorem
For all x ∈ Rn we have ∥x∥∞ ≤ ∥x∥2 ≤

√
n∥x∥∞.

▶ Let xj be the component of x such that ∥x∥∞ = |xj |.

∥x∥2
∞ = |xj |2 = x2

j ≤
n∑

k=1

x2
k = ∥x∥2

2

Hence ∥x∥∞ ≤ ∥x∥2.

▶ Note that

∥x∥2
2 =

n∑
k=1

x2
k ≤

n∑
k=1

x2
j = nx2

j = n∥x∥2
∞.

Hence ∥x∥2 ≤
√

n∥x∥∞.
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Matrix Norm

Definition
A matrix norm on Rn×n is a real-valued function ∥ · ∥ satisfying for all
matrices A, B ∈ Rn×n and for all α ∈ R:

1. ∥A∥ ≥ 0
2. ∥A∥ = 0 if and only if A = 0n×n

3. ∥αA∥ = |α| ∥A∥
4. ∥A + B∥ ≤ ∥A∥+ ∥B∥
5. ∥A B∥ ≤ ∥A∥ ∥B∥

Remark: the distance between A and B with respect to the matrix
norm is ∥A − B∥.
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Induced Norms

Theorem
If ∥ · ∥ is a vector norm on Rn then

∥A∥ = max
∥x∥=1

∥Ax∥

is a matrix norm.

Remark: this is a matrix norm induced by the vector norm.

Corollary
For any vector z ̸= 0, matrix A and norm ∥ · ∥ we have ∥Az∥ ≤ ∥A∥ ∥z∥.
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Proof

▶ If z ̸= 0 then z/∥z∥ is a unit vector.
▶ Using the induced norm on matrix A we have

max
∥x∥=1

∥Ax∥ = max
∥z∦=0

∥∥∥∥A
z
∥z∥
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∥z∦=0

∥∥∥∥A
z
∥z∥

∥∥∥∥ = max
∥z∦=0
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Comments

Using the l2- and l∞-norms (for vectors) we have induced norms (for
matrices) of

∥A∥2 = max
∥x∥2=1

∥Ax∥2

∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞.

The norm of a matrix is the maximum “stretch” it gives to a unit vector.
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Example: l2-norm

Consider the matrix

A =

[
1 4
7 2

]
and the l2-norm on R2.
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Example: l∞-norm

Consider the matrix

A =

[
1 4
7 2

]
and the l∞-norm on R2.
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Infinity Norm of Matrices

Theorem
If A ∈ Rn×n then

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |,

in other words, the ∞-norm of A is the row with the largest summed
magnitudes.



Proof (1 of 4)

▶ Let x ∈ Rn with ∥x∥∞ = 1.

∥Ax∥∞ = max
1≤i≤n

|(Ax)i |

= max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣

≤ max
1≤i≤n

n∑
j=1

|aij | |xj |

≤

 max
1≤i≤n

n∑
j=1

|aij |

( max
1≤j≤n

|xj |
)
.
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Proof (2 of 4)

▶ Since ∥x∥∞ = 1 then max
1≤j≤n

|xj | = 1 and

∥Ax∥∞ ≤ max
1≤i≤n

n∑
j=1

|aij |.

▶ Thus

∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞ ≤ max
1≤i≤n

n∑
j=1

|aij |.

▶ Let p ∈ {1,2, . . . ,n} be such that

n∑
j=1

|apj | = max
1≤i≤n

n∑
j=1

|aij |.
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▶ Define x ∈ Rn as

xj =

{
1 if apj ≥ 0,

−1 if apj < 0.

Then ∥x∥∞ = 1.

▶ Therefore apjxj = |apj | for j = 1,2, . . . ,n and
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Thus we have shown that
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1≤i≤n

n∑
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1≤i≤n

n∑
j=1

|aij |

which implies

∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |.

Example

Let A =

 1 3 2
−4 0 1

5 0 2

 and find

∥A∥∞

= 7.
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Homework

▶ Read Section 7.1.
▶ Exercises: 1, 3, 4, 5, 13


