Norms of Vectors and Matrices MATH 375 *Numerical Analysis*

J Robert Buchanan

Department of Mathematics

Spring 2022

K ロ > K @ > K 할 > K 할 > (할 > O Q O)

Objectives

- ▶ We discussed direct techniques for solving linear systems in Chapter 6.
- \blacktriangleright In Chapter 7 we will discuss iterative techniques for solving linear systems.
- ▶ We have seen iterative methods before when we discussed fixed point methods (notably Newton's method) for solving scalar equations.
- ▶ Today we will explore ways of measuring the distance between vectors and also matrices.

KORK EXTERNED ARA

Vector Norm

Definition

A **vector norm** on \mathbb{R}^n is a function denoted $\|\cdot\|$ from $\mathbb{R}^n \to \mathbb{R}$ with the following properties:

KORK ERKER ADAM ADA

- 1. $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 2. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- 3. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and for all $\mathbf{x} \in \mathbb{R}^n$.
- 4. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Remark: the last property is called the **triangle inequality**.

Euclidean Norm

There are several functions which possess the four properties of a vector norm.

Definition

The l_2 **-norm** of $\mathbf{x} \in \mathbb{R}^n$ is defined as

$$
\|\mathbf{x}\|_2 = \left(\sum_{k=1}^n x_k^2\right)^{1/2}
$$

.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

This is also called the **Euclidean norm**.

Euclidean Norm

There are several functions which possess the four properties of a vector norm.

Definition

The l_2 **-norm** of $\mathbf{x} \in \mathbb{R}^n$ is defined as

$$
\|\mathbf{x}\|_2 = \left(\sum_{k=1}^n x_k^2\right)^{1/2}
$$

.

KOD KARD KED KED BE YOUR

This is also called the **Euclidean norm**.

Definition The l_{∞} **-norm** of $\mathbf{x} \in \mathbb{R}^n$ is defined as

$$
\|\mathbf{x}\|_{\infty} = \max_{1 \leq k \leq n} |x_k|.
$$

lp-Norm

Definition For $p \geq 1$ the l_p **-norm** of $\mathbf{x} \in \mathbb{R}^n$ is defined as

Let
$$
\mathbf{x} = \langle 1, -2, 1/2 \rangle
$$
 and find
\n $\|\mathbf{x}\|_2 = \sqrt{1^2 + (-2)^2 + (1/2)^2} = \frac{\sqrt{21}}{2}$
\n $\|\mathbf{x}\|_{\infty}$

K ロ X K d X K 함 X K 함 X (할) - 9 Q Q Q

Let
$$
\mathbf{x} = \langle 1, -2, 1/2 \rangle
$$
 and find
\n
$$
\|\mathbf{x}\|_2 = \sqrt{1^2 + (-2)^2 + (1/2)^2} = \frac{\sqrt{21}}{2}
$$
\n
$$
\|\mathbf{x}\|_{\infty} = \max_{1 \le k \le 3} \{|1|, |-2|, |1/2|\} = 2
$$

K ロ X K d X K 함 X K 함 X (할) - 9 Q Q Q

Let
$$
\mathbf{x} = \langle 1, -2, 1/2 \rangle
$$
 and find
\n
$$
\|\mathbf{x}\|_2 = \sqrt{1^2 + (-2)^2 + (1/2)^2} = \frac{\sqrt{21}}{2}
$$
\n
$$
\|\mathbf{x}\|_{\infty} = \max_{1 \le k \le 3} \{|1|, |-2|, |1/2|\} = 2
$$

K ロ X x (日 X X B X X B X X B X O Q O

Sketch the vectors in \mathbb{R}^2 for which

$$
\blacktriangleright \ \ \|\bm{x}\|_2 \leq 1,
$$

▶ ∥**x**∥[∞] ≤ 1.

Solution

KORK@RKERKER E 1990

Cauchy-Schwarz Inequality

Theorem *For all* $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$
\mathbf{x}^t \mathbf{y} = \sum_{k=1}^n x_k y_k = \mathbf{x} \cdot \mathbf{y} \le \left(\sum_{k=1}^n x_i^2\right)^{1/2} \left(\sum_{k=1}^n y_i^2\right)^{1/2} = \|\mathbf{x}\|_2 \|\mathbf{y}\|_2.
$$

 \blacktriangleright If $x = 0$ or $y = 0$ the result is trivially true, so suppose $x \neq 0$ and $y \neq 0$.

- \blacktriangleright If $x = 0$ or $y = 0$ the result is trivially true, so suppose $x \neq 0$ and $y \neq 0$.
- \blacktriangleright Let $\lambda \in \mathbb{R}$ then

$$
0 \leq \|\mathbf{x} - \lambda \mathbf{y}\|_2^2
$$

=
$$
\sum_{k=1}^n (x_k - \lambda y_k)^2
$$

=
$$
\sum_{k=1}^n (x_k^2 - 2\lambda x_k y_k + \lambda^2 y_k^2)
$$

- \blacktriangleright If $x = 0$ or $y = 0$ the result is trivially true, so suppose $x \neq 0$ and $y \neq 0$.
- \blacktriangleright Let $\lambda \in \mathbb{R}$ then

$$
0 \leq ||\mathbf{x} - \lambda \mathbf{y}||_2^2
$$

\n
$$
= \sum_{k=1}^n (x_k - \lambda y_k)^2
$$

\n
$$
= \sum_{k=1}^n (x_k^2 - 2\lambda x_k y_k + \lambda^2 y_k^2)
$$

\n
$$
0 \leq \sum_{k=1}^n x_k^2 - 2\lambda \sum_{k=1}^n x_k y_k + \lambda^2 \sum_{k=1}^n y_k^2
$$

- \blacktriangleright If $x = 0$ or $y = 0$ the result is trivially true, so suppose $x \neq 0$ and $y \neq 0$.
- \blacktriangleright Let $\lambda \in \mathbb{R}$ then

$$
0 \leq \| \mathbf{x} - \lambda \mathbf{y} \|_2^2
$$

\n
$$
= \sum_{k=1}^n (x_k - \lambda y_k)^2
$$

\n
$$
= \sum_{k=1}^n (x_k^2 - 2\lambda x_k y_k + \lambda^2 y_k^2)
$$

\n
$$
0 \leq \sum_{k=1}^n x_k^2 - 2\lambda \sum_{k=1}^n x_k y_k + \lambda^2 \sum_{k=1}^n y_k^2
$$

\n
$$
2\lambda \sum_{k=1}^n x_k y_k \leq \sum_{k=1}^n x_k^2 + \lambda^2 \sum_{k=1}^n y_k^2.
$$

Suppose
$$
\lambda = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}
$$
 then

$$
2\lambda \sum_{k=1}^n x_k y_k \le \sum_{k=1}^n x_k^2 + \lambda^2 \sum_{k=1}^n y_k^2
$$

Suppose
$$
\lambda = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}
$$
 then
\n
$$
2\lambda \sum_{k=1}^n x_k y_k \le \sum_{k=1}^n x_k^2 + \lambda^2 \sum_{k=1}^n y_k^2
$$
\n
$$
2 \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2} \sum_{k=1}^n x_k y_k \le \|\mathbf{x}\|_2^2 + \left(\frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}\right)^2 \|\mathbf{y}\|_2^2
$$

Suppose
$$
\lambda = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}
$$
 then
\n
$$
2\lambda \sum_{k=1}^n x_k y_k \le \sum_{k=1}^n x_k^2 + \lambda^2 \sum_{k=1}^n y_k^2
$$
\n
$$
2 \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2} \sum_{k=1}^n x_k y_k \le \|\mathbf{x}\|_2^2 + \left(\frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}\right)^2 \|\mathbf{y}\|_2^2
$$
\n
$$
= 2 \|\mathbf{x}\|_2^2
$$

Suppose
$$
\lambda = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}
$$
 then
\n
$$
2\lambda \sum_{k=1}^n x_k y_k \le \sum_{k=1}^n x_k^2 + \lambda^2 \sum_{k=1}^n y_k^2
$$
\n
$$
2 \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2} \sum_{k=1}^n x_k y_k \le \|\mathbf{x}\|_2^2 + \left(\frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}\right)^2 \|\mathbf{y}\|_2^2
$$
\n
$$
= 2 \|\mathbf{x}\|_2^2
$$
\n
$$
\frac{1}{\|\mathbf{y}\|_2} \sum_{k=1}^n x_k y_k \le \|\mathbf{x}\|_2
$$
\n
$$
\sum_{k=1}^n x_k y_k \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2.
$$

Distance

Definition If **x**, **y** ∈ ℝⁿ the *l*₂-distance between **x** and **y** is

$$
\|\mathbf{x}-\mathbf{y}\|_2=\left(\sum_{k=1}^n(x_k-y_k)^2\right)^{1/2}.
$$

The *l*∞**-distance** between **x** and **y** is

$$
\|\mathbf{x}-\mathbf{y}\|_{\infty}=\max_{1\leq k\leq n}|x_k-y_k|.
$$

Distance

Definition If **x**, **y** ∈ ℝⁿ the *l*₂-distance between **x** and **y** is

$$
\|\mathbf{x}-\mathbf{y}\|_2=\left(\sum_{k=1}^n(x_k-y_k)^2\right)^{1/2}.
$$

The *l*∞**-distance** between **x** and **y** is

$$
\|\mathbf{x}-\mathbf{y}\|_{\infty}=\max_{1\leq k\leq n}|x_k-y_k|.
$$

Definition

A sequence of vectors $\{x^{(k)}\}_{k=1}^{\infty}$ in \mathbb{R}^n is said to **converge** to vector **x** with respect to norm $\|\cdot\|$ if given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\|\mathbf{x}^{(k)} - \mathbf{x}\| < \epsilon$ for all $k ≥ N$.

Suppose the solution to a linear system is $\mathbf{x} = \langle 1, -2, 3 \rangle$ and by Gaussian elimination and back-substitution we approximate the solution by $\hat{\mathbf{x}} = (0.9, -1.99, 2.95)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Find:

$$
\blacktriangleright \ \|\bm{x} - \hat{\bm{x}}\|_2
$$

▶ ∥**x**−**x**ˆ∥[∞]

Suppose the solution to a linear system is $\mathbf{x} = \langle 1, -2, 3 \rangle$ and by Gaussian elimination and back-substitution we approximate the solution by $\hat{\mathbf{x}} = (0.9, -1.99, 2.95)$.

Find:

►
$$
\|\mathbf{x} - \hat{\mathbf{x}}\|_2 = \sqrt{(1 - 0.9)^2 + (-2 - (-1.99))^2 + (3 - 2.95)^2} =
$$

0.11225
▶ $\|\mathbf{x} - \hat{\mathbf{x}}\|_{\infty}$

KORKARA KERKER DAGA

Suppose the solution to a linear system is $\mathbf{x} = \langle 1, -2, 3 \rangle$ and by Gaussian elimination and back-substitution we approximate the solution by $\hat{\mathbf{x}} = (0.9, -1.99, 2.95)$.

Find:

►
$$
\|\mathbf{x} - \hat{\mathbf{x}}\|_2 = \sqrt{(1 - 0.9)^2 + (-2 - (-1.99))^2 + (3 - 2.95)^2} =
$$

0.11225

$$
\blacktriangleright \ \|\bm{x} - \hat{\bm{x}}\|_{\infty} = \text{max}_{1 \leq k \leq 3} \{|1 - 0.9|, |-2 - (-1.99)|, |3 - 2.95|\} = 0.1
$$

Convergence Result

Theorem

The sequence of vectors $\{X^{(k)}\}_{k=1}^{\infty}$ *converges to* $X \in \mathbb{R}^n$ *with respect to* ∥ · ∥[∞] *if and only if*

$$
\lim_{k\to\infty}x_i^{(k)}=x_i \quad \text{for } i=1,2,\ldots,n.
$$

Convergence Result

Theorem

The sequence of vectors $\{X^{(k)}\}_{k=1}^{\infty}$ *converges to* $X \in \mathbb{R}^n$ *with respect to* ∥ · ∥[∞] *if and only if*

$$
\lim_{k\to\infty}x_i^{(k)}=x_i \quad \text{for } i=1,2,\ldots,n.
$$

Proof.

▶ Suppose $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ converges to **x** with respect to $\|\cdot\|_{\infty}$.

▶ Given ϵ > 0 there exists *N* ∈ N such that for all *k* ≥ *N*

$$
\max_{1\leq i\leq n}\left|X_i^{(k)}-X_i\right|=\|\mathbf{x}^{(k)}-\mathbf{x}\|_{\infty}<\epsilon.
$$

.
◆ ロ ▶ ◆ *団* ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

▶ This implies $|x_i^{(k)} - x_i| < \epsilon$ for $i = 1, 2, ..., n$ which implies $\lim_{k\to\infty}x_i^{(k)}=x_i$ for $i=1,2,\ldots,n$.

Proof

- ▶ Suppose $\lim_{k\to\infty} x_i^{(k)} = x_i$ for $i = 1, 2, ..., n$.
- **►** Given $\epsilon > 0$ let N_i be a positive integer with the property that $\left| X_i^{(k)} - X_i \right| < \epsilon$ when $k \ge N_i$.
- ▶ Define $N = \max_{1 \le i \le n} \{N_i\}$, then if $k \ge N$ we have

$$
\max_{1\leq i\leq n}\left| x_i^{(k)}-x_i\right|=\|\mathbf{x}^{(k)}-\mathbf{x}\|_{\infty}<\epsilon.
$$

KORKAR KERKER E VOOR

► This implies $\mathbf{x}^{(k)} \to \mathbf{x}$ with respect to norm $\|\cdot\|_{\infty}$.

Let
$$
\mathbf{x}^{(k)} = \left\langle \frac{1}{k}, \frac{\sin k}{k}, 1 + \frac{\cos k}{k} \right\rangle
$$
 and find

$$
\lim_{k \to \infty} \mathbf{x}^{(k)}
$$

K ロ X K d X K 함 X K 함 X (할) - 9 Q Q Q

Let
$$
\mathbf{x}^{(k)} = \left\langle \frac{1}{k}, \frac{\sin k}{k}, 1 + \frac{\cos k}{k} \right\rangle
$$
 and find

$$
\lim_{k \to \infty} \mathbf{x}^{(k)} = \langle 0, 0, 1 \rangle.
$$

KOXK@XKEXKEX E 1990

Equivalence of Norms

Theorem *For all* $\mathbf{x} \in \mathbb{R}^n$ *we have* $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2 \leq \sqrt{n}$ *n*∥**x**∥∞*.*

Equivalence of Norms

Theorem *For all* $\mathbf{x} \in \mathbb{R}^n$ *we have* $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2 \leq \sqrt{n}$ *n*∥**x**∥∞*.*

▶ Let x_j be the component of **x** such that $||\mathbf{x}||_{\infty} = |x_j|$.

$$
\|\mathbf{x}\|_{\infty}^2 = |x_j|^2 = x_j^2 \le \sum_{k=1}^n x_k^2 = \|\mathbf{x}\|_2^2
$$

Hence $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2}$.

▶ Note that

$$
\|\mathbf{x}\|_2^2 = \sum_{k=1}^n x_k^2 \le \sum_{k=1}^n x_j^2 = n x_j^2 = n \|\mathbf{x}\|_{\infty}^2.
$$

Hence $\|\mathbf{x}\|_2 \leq \sqrt{n} \|\mathbf{x}\|_{\infty}$.

Illustration

イロト イ団 トイミト イミト \equiv 990

Matrix Norm

Definition

A **matrix norm** on $\mathbb{R}^{n \times n}$ is a real-valued function $\|\cdot\|$ satisfying for all matrices $A, B \in \mathbb{R}^{n \times n}$ and for all $\alpha \in \mathbb{R}$:

KORK STRAIN A STRAIN A STRAIN

$$
1. \|A\| \geq 0
$$

2.
$$
||A|| = 0
$$
 if and only if $A = 0^{n \times n}$

3.
$$
\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|
$$

$$
4. \ \|A+B\| \leq \|A\| + \|B\|
$$

5. $||AB|| \le ||A|| ||B||$

Matrix Norm

Definition

A **matrix norm** on $\mathbb{R}^{n \times n}$ is a real-valued function $\|\cdot\|$ satisfying for all matrices $A, B \in \mathbb{R}^{n \times n}$ and for all $\alpha \in \mathbb{R}$:

$$
1. \|A\| \geq 0
$$

2.
$$
||A|| = 0
$$
 if and only if $A = 0^{n \times n}$

- 3. ∥α *A*∥ = |α| ∥*A*∥
- 4. ∥*A* + *B*∥ ≤ ∥*A*∥ + ∥*B*∥
- 5. $||AB|| \le ||A|| ||B||$

Remark: the distance between *A* and *B* with respect to the matrix norm is $||A - B||$.

KORK ERKER ADAM ADA

Induced Norms

Theorem *If* $\|\cdot\|$ *is a vector norm on* \mathbb{R}^n *then*

$$
\|A\|=\max_{\|\mathbf{x}\|=1}\|A\mathbf{x}\|
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

is a matrix norm.

Remark: this is a matrix norm **induced** by the vector norm.

Induced Norms

Theorem *If* $\|\cdot\|$ *is a vector norm on* \mathbb{R}^n *then*

$$
\|A\|=\max_{\|\mathbf{x}\|=1}\|A\mathbf{x}\|
$$

is a matrix norm.

Remark: this is a matrix norm **induced** by the vector norm.

Corollary *For any vector* $z \neq 0$ *, matrix A and norm* $\|\cdot\|$ *we have* $\|Az\| \leq \|A\| \|z\|$ *.*

KORKARA KERKER DAGA

Proof

▶ If $z \neq 0$ then $z/||z||$ is a unit vector.

▶ Using the induced norm on matrix *A* we have

$$
\max_{\|x\|=1} \|Ax\| = \max_{\|z\|\neq 0} \left\|A\frac{z}{\|z\|}\right\| = \max_{\|z\|\neq 0} \frac{\|Az\|}{\|z\|} = \|A\|.
$$

Proof

▶ If $z \neq 0$ then $z/||z||$ is a unit vector.

▶ Using the induced norm on matrix A we have

$$
\max_{\|x\|=1} \|A\mathbf{x}\| = \max_{\|z\|\neq 0} \left\|A\frac{\mathbf{z}}{\|\mathbf{z}\|}\right\| = \max_{\|z\|\neq 0} \frac{\|A\mathbf{z}\|}{\|\mathbf{z}\|} = \|A\|.
$$

▶ Therefore,

$$
||A|| ||z|| \ge \frac{||Az||}{||z||} ||z|| = ||Az||.
$$

Comments

Using the *l*2- and *l*∞-norms (for vectors) we have induced norms (for matrices) of

$$
||A||_2 = \max_{||\mathbf{x}||_2=1} ||A\mathbf{x}||_2
$$

$$
||A||_{\infty} = \max_{||\mathbf{x}||_{\infty}=1} ||A\mathbf{x}||_{\infty}.
$$

Comments

Using the l_2 - and l_∞ -norms (for vectors) we have induced norms (for matrices) of

$$
||A||_2 = \max_{||\mathbf{x}||_2=1} ||A\mathbf{x}||_2
$$

$$
||A||_{\infty} = \max_{||\mathbf{x}||_{\infty}=1} ||A\mathbf{x}||_{\infty}.
$$

The norm of a matrix is the maximum "stretch" it gives to a unit vector.

Example: *l*₂-norm

Consider the matrix

$$
A = \left[\begin{array}{cc} 1 & 4 \\ 7 & 2 \end{array} \right]
$$

and the l_2 -norm on \mathbb{R}^2 .

Example: *l*∞-norm

Consider the matrix

$$
A = \left[\begin{array}{cc} 1 & 4 \\ 7 & 2 \end{array} \right]
$$

and the l_{∞} -norm on \mathbb{R}^2 .

Infinity Norm of Matrices

Theorem *If* $A \in \mathbb{R}^{n \times n}$ then

$$
||A||_{\infty}=\max_{1\leq i\leq n}\sum_{j=1}^n|a_{ij}|,
$$

in other words, the ∞*-norm of A is the row with the largest summed magnitudes.*

$$
\begin{aligned}\n\blacktriangleright \text{ Let } \mathbf{x} \in \mathbb{R}^n \text{ with } \|\mathbf{x}\|_{\infty} = 1. \\
\|\mathbf{A}\mathbf{x}\|_{\infty} &= \max_{1 \leq i \leq n} |(\mathbf{A}\mathbf{x})_i| \\
&= \max_{1 \leq i \leq n} \left| \sum_{j=1}^n a_{ij} x_j \right|\n\end{aligned}
$$

Kロメ K個 K K ミメ K ミメ / ミーの Q (V)

$$
\mathbf{\triangleright} \mathsf{Let } \mathbf{x} \in \mathbb{R}^n \text{ with } \|\mathbf{x}\|_{\infty} = 1.
$$
\n
$$
\|A\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} |(A\mathbf{x})_i|
$$
\n
$$
= \max_{1 \leq i \leq n} \left| \sum_{j=1}^n a_{ij} x_j \right|
$$
\n
$$
\leq \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}| |x_j|
$$
\n
$$
\leq \left(\max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}| \right) \left(\max_{1 \leq j \leq n} |x_j| \right).
$$

K ロ > K 御 > K 暑 > K 暑 > 1 暑 → りなび

$$
\triangleright \text{ Since } \|\mathbf{x}\|_{\infty} = 1 \text{ then } \max_{1 \leq j \leq n} |x_j| = 1 \text{ and}
$$

$$
||A\mathbf{x}||_{\infty}\leq \max_{1\leq i\leq n}\sum_{j=1}^n|a_{ij}|.
$$

Kロメ K個 K K ミメ K ミメ / ミーの Q (V)

$$
\text{Since } \|\mathbf{x}\|_{\infty} = 1 \text{ then } \max_{1 \leq j \leq n} |x_j| = 1 \text{ and}
$$
\n
$$
\|A\mathbf{x}\|_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
$$

$$
\blacktriangleright
$$
 Thus

$$
\|A\|_{\infty} = \max_{\|x\|_{\infty}=1} \|Ax\|_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.
$$

► Since
$$
||\mathbf{x}||_{\infty} = 1
$$
 then $\max_{1 \le j \le n} |x_j| = 1$ and

$$
||A\mathbf{x}||_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|.
$$

 \blacktriangleright Thus

$$
\|A\|_{\infty} = \max_{\|x\|_{\infty}=1} \|A\mathbf{x}\|_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|.
$$

▶ Let $p \in \{1, 2, ..., n\}$ be such that

$$
\sum_{j=1}^n |a_{pj}| = \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|.
$$

Proof (3 of 4)

▶ Define **x** ∈ R *ⁿ* as

$$
x_j=\left\{\begin{array}{rl}1 & \text{if }a_{pj}\geq 0,\\-1 & \text{if }a_{pj}< 0.\end{array}\right.
$$

Then $\|\mathbf{x}\|_{\infty} = 1$.

Proof (3 of 4)

▶ Define **x** ∈ R *ⁿ* as

$$
x_j=\left\{\begin{array}{rl}1 & \text{if }a_{pj}\geq 0,\\-1 & \text{if }a_{pj}< 0.\end{array}\right.
$$

Then $||\mathbf{x}||_{\infty} = 1$.

 \blacktriangleright Therefore $a_{pj}x_j = |a_{pj}|$ for $j = 1, 2, ..., n$ and

$$
\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right|
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 9 Q Q*

Proof (3 of 4)

▶ Define **x** ∈ R *ⁿ* as

$$
x_j=\left\{\begin{array}{rl}1 & \text{if }a_{pj}\geq 0,\\-1 & \text{if }a_{pj}< 0.\end{array}\right.
$$

Then $||\mathbf{x}||_{\infty} = 1$.

 \blacktriangleright Therefore $a_{pj}x_j = |a_{pj}|$ for $j = 1, 2, ..., n$ and

$$
||Ax||_{\infty} = \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij}x_{j} \right|
$$

\n
$$
\geq \left| \sum_{j=1}^{n} a_{pj}x_{j} \right| = \left| \sum_{j=1}^{n} |a_{pj}| \right|
$$

\n
$$
= \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
$$

Proof (4 of 4)

Thus we have shown that

$$
\max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}| \leq ||A||_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|
$$

which implies

$$
||A||_{\infty}=\max_{1\leq i\leq n}\sum_{j=1}^n|a_{ij}|.
$$

Proof (4 of 4)

Thus we have shown that

$$
\max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}| \leq ||A||_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|
$$

which implies

$$
||A||_{\infty}=\max_{1\leq i\leq n}\sum_{j=1}^n|a_{ij}|.
$$

K ロ X x (日 X X B X X B X X B X O Q O

Example
Let
$$
A = \begin{bmatrix} 1 & 3 & 2 \\ -4 & 0 & 1 \\ 5 & 0 & 2 \end{bmatrix}
$$
 and find $||A||_{\infty}$

Proof (4 of 4)

Thus we have shown that

$$
\max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}| \leq ||A||_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|
$$

which implies

$$
||A||_{\infty}=\max_{1\leq i\leq n}\sum_{j=1}^n|a_{ij}|.
$$

Example
Let
$$
A = \begin{bmatrix} 1 & 3 & 2 \\ -4 & 0 & 1 \\ 5 & 0 & 2 \end{bmatrix}
$$
 and find
 $||A||_{\infty} = 7$.

Homework

▶ Read Section 7.1.

▶ Exercises: 1, 3, 4, 5, 13

