Norms of Vectors and Matrices MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Objectives

- We discussed direct techniques for solving linear systems in Chapter 6.
- In Chapter 7 we will discuss iterative techniques for solving linear systems.
- We have seen iterative methods before when we discussed fixed point methods (notably Newton's method) for solving scalar equations.
- Today we will explore ways of measuring the distance between vectors and also matrices.

(ロ) (同) (三) (三) (三) (○) (○)

Vector Norm

Definition

A **vector norm** on \mathbb{R}^n is a function denoted $\|\cdot\|$ from $\mathbb{R}^n \to \mathbb{R}$ with the following properties:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 2. $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- **3**. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{R}$ and for all $\mathbf{x} \in \mathbb{R}^n$.
- 4. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

Remark: the last property is called the triangle inequality.

Euclidean Norm

There are several functions which possess the four properties of a vector norm.

Definition

The I_2 -norm of $\mathbf{x} \in \mathbb{R}^n$ is defined as

$$\mathbf{x}\|_2 = \left(\sum_{k=1}^n x_k^2\right)^{1/2}$$

٠

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

This is also called the Euclidean norm.

Euclidean Norm

There are several functions which possess the four properties of a vector norm.

Definition

The I_2 -norm of $\mathbf{x} \in \mathbb{R}^n$ is defined as

$$\mathbf{x}\|_2 = \left(\sum_{k=1}^n x_k^2\right)^{1/2}$$

٠

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

This is also called the Euclidean norm.

Definition The I_{∞} -norm of $\mathbf{x} \in \mathbb{R}^n$ is defined as

$$\|\mathbf{X}\|_{\infty} = \max_{1 \le k \le n} |x_k|.$$

*I*_p-Norm

Definition For $p \ge 1$ the l_p -norm of $\mathbf{x} \in \mathbb{R}^n$ is defined as

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let
$$\mathbf{x} = \langle 1, -2, 1/2 \rangle$$
 and find
 $\|\mathbf{x}\|_2 = \sqrt{1^2 + (-2)^2 + (1/2)^2} = \frac{\sqrt{21}}{2}$
 $\|\mathbf{x}\|_{\infty}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Let
$$\mathbf{x} = \langle 1, -2, 1/2 \rangle$$
 and find
 $\|\mathbf{x}\|_2 = \sqrt{1^2 + (-2)^2 + (1/2)^2} = \frac{\sqrt{21}}{2}$
 $\|\mathbf{x}\|_{\infty} = \max_{1 \le k \le 3} \{|1|, |-2|, |1/2|\} = 2$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Let
$$\mathbf{x} = \langle 1, -2, 1/2 \rangle$$
 and find
 $\|\mathbf{x}\|_2 = \sqrt{1^2 + (-2)^2 + (1/2)^2} = \frac{\sqrt{21}}{2}$
 $\|\mathbf{x}\|_{\infty} = \max_{1 \le k \le 3} \{|1|, |-2|, |1/2|\} = 2$

Sketch the vectors in \mathbb{R}^2 for which

►
$$\|\mathbf{x}\|_2 \le 1$$
,

$$||\mathbf{x}||_{\infty} \leq 1.$$

Solution

Cauchy-Schwarz Inequality

Theorem For all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$,

$$\mathbf{x}^{t}\mathbf{y} = \sum_{k=1}^{n} x_{k} y_{k} = \mathbf{x} \cdot \mathbf{y} \le \left(\sum_{k=1}^{n} x_{i}^{2}\right)^{1/2} \left(\sum_{k=1}^{n} y_{i}^{2}\right)^{1/2} = \|\mathbf{x}\|_{2} \|\mathbf{y}\|_{2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

If x = 0 or y = 0 the result is trivially true, so suppose x ≠ 0 and y ≠ 0.

- If $\mathbf{x} = \mathbf{0}$ or $\mathbf{y} = \mathbf{0}$ the result is trivially true, so suppose $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$.
- Let $\lambda \in \mathbb{R}$ then

$$0 \leq \|\mathbf{x} - \lambda \mathbf{y}\|_{2}^{2}$$

=
$$\sum_{k=1}^{n} (x_{k} - \lambda y_{k})^{2}$$

=
$$\sum_{k=1}^{n} (x_{k}^{2} - 2\lambda x_{k} y_{k} + \lambda^{2} y_{k}^{2})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- If $\mathbf{x} = \mathbf{0}$ or $\mathbf{y} = \mathbf{0}$ the result is trivially true, so suppose $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$.
- Let $\lambda \in \mathbb{R}$ then

$$0 \leq \|\mathbf{x} - \lambda \mathbf{y}\|_{2}^{2}$$

= $\sum_{k=1}^{n} (x_{k} - \lambda y_{k})^{2}$
= $\sum_{k=1}^{n} (x_{k}^{2} - 2\lambda x_{k} y_{k} + \lambda^{2} y_{k}^{2})$
 $0 \leq \sum_{k=1}^{n} x_{k}^{2} - 2\lambda \sum_{k=1}^{n} x_{k} y_{k} + \lambda^{2} \sum_{k=1}^{n} y_{k}^{2}$

- If $\mathbf{x} = \mathbf{0}$ or $\mathbf{y} = \mathbf{0}$ the result is trivially true, so suppose $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{y} \neq \mathbf{0}$.
- Let $\lambda \in \mathbb{R}$ then

$$0 \leq \|\mathbf{x} - \lambda \mathbf{y}\|_{2}^{2}$$

= $\sum_{k=1}^{n} (x_{k} - \lambda y_{k})^{2}$
= $\sum_{k=1}^{n} (x_{k}^{2} - 2\lambda x_{k} y_{k} + \lambda^{2} y_{k}^{2})$
 $0 \leq \sum_{k=1}^{n} x_{k}^{2} - 2\lambda \sum_{k=1}^{n} x_{k} y_{k} + \lambda^{2} \sum_{k=1}^{n} y_{k}^{2}$
 $2\lambda \sum_{k=1}^{n} x_{k} y_{k} \leq \sum_{k=1}^{n} x_{k}^{2} + \lambda^{2} \sum_{k=1}^{n} y_{k}^{2}.$

Suppose
$$\lambda = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}$$
 then
 $2\lambda \sum_{k=1}^n x_k y_k \leq \sum_{k=1}^n x_k^2 + \lambda^2 \sum_{k=1}^n y_k^2$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Suppose
$$\lambda = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}$$
 then
 $2\lambda \sum_{k=1}^n x_k y_k \leq \sum_{k=1}^n x_k^2 + \lambda^2 \sum_{k=1}^n y_k^2$
 $2\frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2} \sum_{k=1}^n x_k y_k \leq \|\mathbf{x}\|_2^2 + \left(\frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}\right)^2 \|\mathbf{y}\|_2^2$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Suppose
$$\lambda = \frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}$$
 then
 $2\lambda \sum_{k=1}^n x_k y_k \leq \sum_{k=1}^n x_k^2 + \lambda^2 \sum_{k=1}^n y_k^2$
 $2\frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2} \sum_{k=1}^n x_k y_k \leq \|\mathbf{x}\|_2^2 + \left(\frac{\|\mathbf{x}\|_2}{\|\mathbf{y}\|_2}\right)^2 \|\mathbf{y}\|_2^2$
 $= 2\|\mathbf{x}\|_2^2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Suppose
$$\lambda = \frac{\|\mathbf{x}\|_{2}}{\|\mathbf{y}\|_{2}}$$
 then
 $2\lambda \sum_{k=1}^{n} x_{k} y_{k} \leq \sum_{k=1}^{n} x_{k}^{2} + \lambda^{2} \sum_{k=1}^{n} y_{k}^{2}$
 $2\frac{\|\mathbf{x}\|_{2}}{\|\mathbf{y}\|_{2}} \sum_{k=1}^{n} x_{k} y_{k} \leq \|\mathbf{x}\|_{2}^{2} + \left(\frac{\|\mathbf{x}\|_{2}}{\|\mathbf{y}\|_{2}}\right)^{2} \|\mathbf{y}\|_{2}^{2}$
 $= 2\|\mathbf{x}\|_{2}^{2}$
 $\frac{1}{\|\mathbf{y}\|_{2}} \sum_{k=1}^{n} x_{k} y_{k} \leq \|\mathbf{x}\|_{2}$
 $\sum_{k=1}^{n} x_{k} y_{k} \leq \|\mathbf{x}\|_{2}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Distance

Definition If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ the *l*₂-distance between \mathbf{x} and \mathbf{y} is

$$\|\mathbf{x} - \mathbf{y}\|_2 = \left(\sum_{k=1}^n (x_k - y_k)^2\right)^{1/2}.$$

The I_{∞} -distance between **x** and **y** is

$$\|\mathbf{x}-\mathbf{y}\|_{\infty}=\max_{1\leq k\leq n}|x_k-y_k|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Distance

Definition If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ the l_2 -distance between \mathbf{x} and \mathbf{y} is

$$\|\mathbf{x} - \mathbf{y}\|_2 = \left(\sum_{k=1}^n (x_k - y_k)^2\right)^{1/2}$$

The I_{∞} -distance between **x** and **y** is

$$\|\mathbf{x}-\mathbf{y}\|_{\infty}=\max_{1\leq k\leq n}|x_k-y_k|.$$

Definition

A sequence of vectors $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ in \mathbb{R}^n is said to **converge** to vector \mathbf{x} with respect to norm $\|\cdot\|$ if given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $\|\mathbf{x}^{(k)} - \mathbf{x}\| < \epsilon$ for all $k \ge N$.

Suppose the solution to a linear system is $\mathbf{x} = \langle 1, -2, 3 \rangle$ and by Gaussian elimination and back-substitution we approximate the solution by $\hat{\mathbf{x}} = \langle 0.9, -1.99, 2.95 \rangle$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Find:

$$|| \mathbf{x} - \hat{\mathbf{x}} ||_2$$

 $\mathbf{k} \| \mathbf{x} - \hat{\mathbf{x}} \|_{\infty}$

Suppose the solution to a linear system is $\mathbf{x} = \langle 1, -2, 3 \rangle$ and by Gaussian elimination and back-substitution we approximate the solution by $\hat{\mathbf{x}} = \langle 0.9, -1.99, 2.95 \rangle$.

Find:

►
$$\|\mathbf{x} - \hat{\mathbf{x}}\|_2 = \sqrt{(1 - 0.9)^2 + (-2 - (-1.99))^2 + (3 - 2.95)^2} = 0.11225$$

► $\|\mathbf{x} - \hat{\mathbf{x}}\|_{\infty}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Suppose the solution to a linear system is $\mathbf{x} = \langle 1, -2, 3 \rangle$ and by Gaussian elimination and back-substitution we approximate the solution by $\hat{\mathbf{x}} = \langle 0.9, -1.99, 2.95 \rangle$.

Find:

►
$$\|\mathbf{x} - \hat{\mathbf{x}}\|_2 = \sqrt{(1 - 0.9)^2 + (-2 - (-1.99))^2 + (3 - 2.95)^2} = 0.11225$$

►
$$\|\mathbf{x} - \hat{\mathbf{x}}\|_{\infty} = \max_{1 \le k \le 3} \{|1 - 0.9|, |-2 - (-1.99)|, |3 - 2.95|\} = 0.1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Convergence Result

Theorem

The sequence of vectors $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ converges to $\mathbf{x} \in \mathbb{R}^n$ with respect to $\|\cdot\|_{\infty}$ if and only if

$$\lim_{k\to\infty} x_i^{(k)} = x_i \quad \text{for } i = 1, 2, \ldots, n.$$

(ロ) (同) (三) (三) (三) (○) (○)

Convergence Result

Theorem

The sequence of vectors $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ converges to $\mathbf{x} \in \mathbb{R}^n$ with respect to $\|\cdot\|_{\infty}$ if and only if

$$\lim_{k \to \infty} x_i^{(k)} = x_i \text{ for } i = 1, 2, ..., n.$$

Proof.

- Suppose $\{\mathbf{x}^{(k)}\}_{k=1}^{\infty}$ converges to \mathbf{x} with respect to $\|\cdot\|_{\infty}$.
- Given $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $k \ge N$

$$\max_{1\leq i\leq n} \left| \boldsymbol{x}_i^{(k)} - \boldsymbol{x}_i \right| = \| \boldsymbol{x}^{(k)} - \boldsymbol{x} \|_{\infty} < \epsilon.$$

► This implies $|x_i^{(k)} - x_i| < \epsilon$ for i = 1, 2, ..., n which implies $\lim_{k\to\infty} x_i^{(k)} = x_i$ for i = 1, 2, ..., n.

Proof

- Suppose $\lim_{k\to\infty} x_i^{(k)} = x_i$ for $i = 1, 2, \ldots, n$.
- Given $\epsilon > 0$ let N_i be a positive integer with the property that $|x_i^{(k)} x_i| < \epsilon$ when $k \ge N_i$.
- Define $N = \max_{1 \le i \le n} \{N_i\}$, then if $k \ge N$ we have

$$\max_{1\leq i\leq n} \left| \boldsymbol{X}_{i}^{(k)} - \boldsymbol{X}_{i} \right| = \| \boldsymbol{\mathbf{X}}^{(k)} - \boldsymbol{\mathbf{X}} \|_{\infty} < \epsilon.$$

(日) (日) (日) (日) (日) (日) (日)

• This implies $\mathbf{x}^{(k)} \to \mathbf{x}$ with respect to norm $\|\cdot\|_{\infty}$.

Let
$$\mathbf{x}^{(k)} = \left\langle \frac{1}{k}, \frac{\sin k}{k}, 1 + \frac{\cos k}{k} \right\rangle$$
 and find
$$\lim_{k \to \infty} \mathbf{x}^{(k)}$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Let
$$\mathbf{x}^{(k)} = \left\langle \frac{1}{k}, \frac{\sin k}{k}, 1 + \frac{\cos k}{k} \right\rangle$$
 and find
$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \langle 0, 0, 1 \rangle.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Equivalence of Norms

Theorem For all $\mathbf{x} \in \mathbb{R}^n$ we have $\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \sqrt{n} \|\mathbf{x}\|_{\infty}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Equivalence of Norms

Theorem For all $\mathbf{x} \in \mathbb{R}^n$ we have $\|\mathbf{x}\|_{\infty} \le \|\mathbf{x}\|_2 \le \sqrt{n} \|\mathbf{x}\|_{\infty}$.

• Let x_j be the component of **x** such that $\|\mathbf{x}\|_{\infty} = |x_j|$.

$$\|\mathbf{x}\|_{\infty}^{2} = |x_{j}|^{2} = x_{j}^{2} \le \sum_{k=1}^{n} x_{k}^{2} = \|\mathbf{x}\|_{2}^{2}$$

Hence $\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_2$.

Note that

$$\|\mathbf{x}\|_{2}^{2} = \sum_{k=1}^{n} x_{k}^{2} \le \sum_{k=1}^{n} x_{j}^{2} = n x_{j}^{2} = n \|\mathbf{x}\|_{\infty}^{2}.$$

Hence $\|\mathbf{x}\|_2 \leq \sqrt{n} \|\mathbf{x}\|_{\infty}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Illustration

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Matrix Norm

Definition

A **matrix norm** on $\mathbb{R}^{n \times n}$ is a real-valued function $\|\cdot\|$ satisfying for all matrices $A, B \in \mathbb{R}^{n \times n}$ and for all $\alpha \in \mathbb{R}$:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

1.
$$||A|| \ge 0$$

2.
$$||A|| = 0$$
 if and only if $A = 0^{n \times n}$

- $\mathbf{3.} \ \|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$
- 4. $||A + B|| \le ||A|| + ||B||$

5. $\|AB\| \le \|A\| \|B\|$

Matrix Norm

Definition

A **matrix norm** on $\mathbb{R}^{n \times n}$ is a real-valued function $\|\cdot\|$ satisfying for all matrices $A, B \in \mathbb{R}^{n \times n}$ and for all $\alpha \in \mathbb{R}$:

1.
$$||A|| \ge 0$$

2.
$$||A|| = 0$$
 if and only if $A = 0^{n \times n}$

- $\mathbf{3.} \ \|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$
- 4. $||A + B|| \le ||A|| + ||B||$
- 5. $\|AB\| \le \|A\| \|B\|$

Remark: the distance between *A* and *B* with respect to the matrix norm is ||A - B||.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Induced Norms

Theorem If $\|\cdot\|$ is a vector norm on \mathbb{R}^n then

$$|\boldsymbol{A}\| = \max_{\|\boldsymbol{\mathbf{x}}\|=1} \|\boldsymbol{A}\boldsymbol{\mathbf{x}}\|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

is a matrix norm.

Remark: this is a matrix norm induced by the vector norm.

Induced Norms

Theorem If $\|\cdot\|$ is a vector norm on \mathbb{R}^n then

$$|\boldsymbol{A}\| = \max_{\|\boldsymbol{x}\|=1} \|\boldsymbol{A}\boldsymbol{x}\|$$

is a matrix norm.

Remark: this is a matrix norm induced by the vector norm.

Corollary For any vector $\mathbf{z} \neq \mathbf{0}$, matrix A and norm $\|\cdot\|$ we have $\|A\mathbf{z}\| \leq \|A\| \|\mathbf{z}\|$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof

• If $\mathbf{z} \neq \mathbf{0}$ then $\mathbf{z}/\|\mathbf{z}\|$ is a unit vector.

Using the induced norm on matrix A we have

$$\max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\| = \max_{\|\mathbf{z}\|\neq 0} \left\|A\frac{\mathbf{z}}{\|\mathbf{z}\|}\right\| = \max_{\|\mathbf{z}\|\neq 0} \frac{\|A\mathbf{z}\|}{\|\mathbf{z}\|} = \|A\|.$$

Proof

• If $\mathbf{z} \neq \mathbf{0}$ then $\mathbf{z}/\|\mathbf{z}\|$ is a unit vector.

Using the induced norm on matrix A we have

$$\max_{\|\mathbf{x}\|=1} \|A\mathbf{x}\| = \max_{\|\mathbf{z}\|\neq 0} \left\|A\frac{\mathbf{z}}{\|\mathbf{z}\|}\right\| = \max_{\|\mathbf{z}\|\neq 0} \frac{\|A\mathbf{z}\|}{\|\mathbf{z}\|} = \|A\|.$$

► Therefore,

$$\|A\| \|\mathbf{z}\| \ge \frac{\|A\mathbf{z}\|}{\|\mathbf{z}\|} \|\mathbf{z}\| = \|A\mathbf{z}\|.$$

Comments

Using the $\mathit{I}_2\text{-}$ and $\mathit{I}_\infty\text{-}\text{norms}$ (for vectors) we have induced norms (for matrices) of

$$\|\boldsymbol{A}\|_{2} = \max_{\|\boldsymbol{\mathbf{x}}\|_{2}=1} \|\boldsymbol{A}\boldsymbol{\mathbf{x}}\|_{2}$$
$$\|\boldsymbol{A}\|_{\infty} = \max_{\|\boldsymbol{\mathbf{x}}\|_{\infty}=1} \|\boldsymbol{A}\boldsymbol{\mathbf{x}}\|_{\infty}.$$

Comments

Using the $\mathit{I}_2\text{-}$ and $\mathit{I}_\infty\text{-}\text{norms}$ (for vectors) we have induced norms (for matrices) of

$$\|\boldsymbol{A}\|_{2} = \max_{\|\boldsymbol{\mathbf{x}}\|_{2}=1} \|\boldsymbol{A}\boldsymbol{\mathbf{x}}\|_{2}$$
$$\|\boldsymbol{A}\|_{\infty} = \max_{\|\boldsymbol{\mathbf{x}}\|_{\infty}=1} \|\boldsymbol{A}\boldsymbol{\mathbf{x}}\|_{\infty}.$$

The norm of a matrix is the maximum "stretch" it gives to a unit vector.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Example: *I*₂-norm

Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & 4 \\ 7 & 2 \end{array} \right]$$

and the I_2 -norm on \mathbb{R}^2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example: I_{∞} -norm

Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & 4 \\ 7 & 2 \end{array} \right]$$

and the I_{∞} -norm on \mathbb{R}^2 .

・ロト・日本・日本・日本・日本・日本

Infinity Norm of Matrices

Theorem If $A \in \mathbb{R}^{n \times n}$ then

$$\|\boldsymbol{A}\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |\boldsymbol{a}_{ij}|,$$

in other words, the ∞ -norm of A is the row with the largest summed magnitudes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Proof (1 of 4)

► Let
$$\mathbf{x} \in \mathbb{R}^n$$
 with $\|\mathbf{x}\|_{\infty} = 1$.
 $\|A\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |(A\mathbf{x})_i|$
$$= \max_{1 \le i \le n} \left| \sum_{j=1}^n a_{ij} x_j \right|$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Proof (1 of 4)

► Let
$$\mathbf{x} \in \mathbb{R}^n$$
 with $\|\mathbf{x}\|_{\infty} = 1$.
 $\|A\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |(A\mathbf{x})_i|$

$$= \max_{1 \le i \le n} \left| \sum_{j=1}^n a_{ij} x_j \right|$$

$$\leq \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}| |x_j|$$

$$\leq \left(\max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}| \right) \left(\max_{1 \le j \le n} |x_j| \right)$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

•

Proof (2 of 4)

Since
$$\|\mathbf{x}\|_{\infty} = 1$$
 then $\max_{1 \le j \le n} |x_j| = 1$ and

$$\|\mathbf{A}\mathbf{x}\|_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |\mathbf{a}_{ij}|.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Proof (2 of 4)

Since
$$\|\mathbf{x}\|_{\infty} = 1$$
 then $\max_{1 \le j \le n} |x_j| = 1$ and
 $\|A\mathbf{x}\|_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|.$

$$\|\boldsymbol{A}\|_{\infty} = \max_{\|\boldsymbol{\mathbf{x}}\|_{\infty}=1} \|\boldsymbol{A}\boldsymbol{\mathbf{x}}\|_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |\boldsymbol{a}_{ij}|.$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Proof (2 of 4)

Since
$$\|\mathbf{x}\|_{\infty} = 1$$
 then $\max_{1 \le j \le n} |x_j| = 1$ and
 $\|A\mathbf{x}\|_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|.$

$$\|\boldsymbol{A}\|_{\infty} = \max_{\|\boldsymbol{\mathbf{x}}\|_{\infty}=1} \|\boldsymbol{A}\boldsymbol{\mathbf{x}}\|_{\infty} \leq \max_{1\leq i\leq n} \sum_{j=1}^{n} |\boldsymbol{a}_{ij}|.$$

• Let $p \in \{1, 2, \dots, n\}$ be such that

$$\sum_{j=1}^{n} |a_{pj}| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Proof (3 of 4)

• Define $\mathbf{x} \in \mathbb{R}^n$ as

$$x_j = \left\{ egin{array}{ccc} 1 & ext{if } a_{pj} \geq 0, \\ -1 & ext{if } a_{pj} < 0. \end{array}
ight.$$

Then $\|\boldsymbol{x}\|_{\infty} = 1$.

Proof (3 of 4)

• Define $\mathbf{x} \in \mathbb{R}^n$ as

$$x_j = \begin{cases} 1 & \text{if } a_{pj} \ge 0, \\ -1 & \text{if } a_{pj} < 0. \end{cases}$$

Then $\|\mathbf{x}\|_{\infty} = 1$.

• Therefore $a_{pj}x_j = |a_{pj}|$ for j = 1, 2, ..., n and

$$\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_j \right|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof (3 of 4)

• Define $\mathbf{x} \in \mathbb{R}^n$ as

$$x_j = \begin{cases} 1 & \text{if } a_{pj} \ge 0, \\ -1 & \text{if } a_{pj} < 0. \end{cases}$$

Then $\|\mathbf{x}\|_{\infty} = 1$.

• Therefore $a_{pj}x_j = |a_{pj}|$ for j = 1, 2, ..., n and

$$\|A\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right|$$
$$\geq \left| \sum_{j=1}^{n} a_{pj} x_{j} \right| = \left| \sum_{j=1}^{n} |a_{pj}| \right|$$
$$= \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Proof (4 of 4)

Thus we have shown that

$$\max_{1 \leq i \leq n} \sum_{j=1}^{n} |\mathbf{a}_{ij}| \leq \|\mathbf{A}\|_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |\mathbf{a}_{ij}|$$

which implies

$$\|\boldsymbol{A}\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |\boldsymbol{a}_{ij}|.$$

Proof (4 of 4)

Thus we have shown that

$$\max_{1 \leq i \leq n} \sum_{j=1}^{n} |\mathbf{a}_{ij}| \leq \|\mathbf{A}\|_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |\mathbf{a}_{ij}|$$

which implies

$$\|\boldsymbol{A}\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |\boldsymbol{a}_{ij}|.$$

Example
Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ -4 & 0 & 1 \\ 5 & 0 & 2 \end{bmatrix}$$
 and find
 $||A||_{\infty}$

Proof (4 of 4)

Thus we have shown that

$$\max_{1\leq i\leq n}\sum_{j=1}^{n}|\boldsymbol{a}_{ij}|\leq \|\boldsymbol{A}\|_{\infty}\leq \max_{1\leq i\leq n}\sum_{j=1}^{n}|\boldsymbol{a}_{ij}|$$

which implies

$$\|\boldsymbol{A}\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |\boldsymbol{a}_{ij}|.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Example
Let
$$A = \begin{bmatrix} 1 & 3 & 2 \\ -4 & 0 & 1 \\ 5 & 0 & 2 \end{bmatrix}$$
 and find
 $\|A\|_{\infty} = 7.$

Homework

Read Section 7.1.

Exercises: 1, 3, 4, 5, 13

