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Objectives

In this lesson we will learn to

> accelerate the convergence of an iterative method for solving a
linear system, and

> select the the iterative method with the most rapid convergence.



Residual Vector

Definition

Suppose vector X € R” is an approximation to the solution of the
linear system Ax = b. The residual vector for X with respect to this
systemisr=b — AX.



Residual Vector for Gauss-Seidel

We would like the residual vectors to converge as rapidly as possible
to the zero vector. Let the approximate solution vector to the
Gauss-Seidel method be expressed as

U=

Express the residual vectorr = b — AX.
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Thus the Gauss-Seidel method can be thought of as choosing x,-(k)
such that *
_ r;
xl.(k) = X,-(k R +
dii
Now consider the residual vector r,(f)1 associated with the
approximate solution
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Reducing the Norm of the Residual Vector

We make the following modification to the earlier equation:

(K)
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in order the reduce the norm of the residual vector most efficiently. Let
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where w > 0.

Such a method is called a relaxation method.
» For 0 < w < 1 these are called under-relaxation methods.
» For 1 < w these are called over-relaxation methods.



Successive Over-Relaxation (SOR)

Let 1 < w, then
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Matrix Formulation

The equation
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Matrix Formulation

The equation
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Matrix Formulation

The equation
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Example

Compare the Gauss-Seidel iterative method to the SOR method with
w = 1.25 for solving the following linear system. Use x(*) = 0 and let
e=10"3.

1
2 txet X = 4
1
X1—2X2—§X3 = -4

Xo+2x3 = 0

The exact solution is

X1 —-16/11 —1.454545
X2 | = 16/11 | ~ 1.454545 | .
X3 -8/11 —0.727273



Solution (1 of 5)

The Gauss-Seidel method can be expressed in matrix form as

0 1/2 1/4 XN 2
xK = TxkDie,=| 0 1/4 —1/8 XD+ 1.
0 —1/8 1/16 Xk —1/2



Solution (2 of 5)

With w = 1.25 then

[2 0 o] 5[ 0 0 o]
D-wlL = 0 -2 0 |- -1 00|=
0 0 2 0 -1 0
—1/2 0 0
(D—wl)y™" = -5/16 —1/2 0
25/128 5/16 1/2
4 [-2 oo s[0 -1 —1/2
(1-wD+wl = | 0 =2 0 |+2/0 0 1/2
0 0 2 0 0 0

0o 1/2 5/8
0 0 —1/2

[1/2 ~5/4 —5/8



Solution (3 of 5)

T, = (D—wl)™'[(1 —w)D+wU]

—5/16 —-1/2 0
25/128 5/16 1/2

, [ 256 640 320
= 1 | _160 144 —120
10241 490 _90 —181

c. = wb-wl)™ b

s[ —1/2 0 0 4
— 2| _5/16 —1/2 0 || -4
4| 25/128 5/16 1/2 0

1 —-320
= 1% 120

—75

0
0

[ —1/2 0 0] [1/2 —-5/4 -5/8



Solution (4 of 5)

The SOR method (with w = 1.25) can be expressed in matrix form as

; —256 640 320 X0 ; [ —820
Vic,=-—— | —160 144 —120 x| 120

10241 100 —90 181 | | (k- | 28] 75

XK — T xtk—



Solution (5 of 5)

Gauss-Seidel SOR (w = 1.25)
PN UG X X0
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1| —2.0000 1.0000 -0.5000 | —2.5000 0.9375 -0.5859
2| —1.6250 1.3125 -0.6523 | —1.4722 1.5286 —0.8089
3| —1.5078 1.4102 —-0.7051 | —1.4294 1.4773 —-0.7211
4 | —1.4712 1.4407 —-0.7203 | —1.4447 1.4531 —-0.7279
5| —1.4598 14502 —-0.7251 | —1.4581 1.4529 —-0.7261
6 | —1.4562 1.4532 —-0.7266 | —1.4543 1.4547 —-0.7277
7 | —1.4551 1.4541 —-0.7271 | —1.4546 14546 —0.7272




Choosing w Optimally

Comment: there is no known method for choosing the best value of
w for the general n x n matrix A. For some commonly occurring
special cases the optimal w can be calculated.



Choosing w Optimally

Comment: there is no known method for choosing the best value of
w for the general n x n matrix A. For some commonly occurring
special cases the optimal w can be calculated.

Theorem (Kahan)

Ifa;#0fori=1,2,...,nthen p(T,) > |w—1|. Thus the SOR
method can converge only if0 < w < 2.



Positive Definite A

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and 0 < w < 2 then the SOR method
will converge for any choice of initial approximation vector x(©).



Positive Definite A

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and 0 < w < 2 then the SOR method
will converge for any choice of initial approximation vector x(©).

Theorem
If A is positive definite and tridiagonal, then p(Tg) = [p(T,-)]2 <1and
the optimal choice of w for the SOR method is

2
14+4/1 = (TP

w =

For this choice of w, then p(T,) =w — 1.



Example

Find the optimal choice of w for solving the following linear system.

dxi+Xo—X3 = 5
—X1+3X+x3 = —4
2x1+2x2 +5x3 = 1
The exact solution is
X4 97/67 1.447761
X2 | = | —56/67 | ~ | —0.835821 | .
X3 -3/67 —0.044776



Solution (1 of 4)

In this positive definite, tridiagonal system

4 1 -1
A= |13 1
| 22 5
(4 0 0
D = | 030
|0 0 5
0 0
L = 10
2 -2




Solution (2 of 4)

1/4 0 0 0 -1 1
T,-—D1(L+U)—[ 0 1/3 o][1 0—1]

0 0 1/5 2 -2 0

0 —1/4 1/4
[ 1/3 0 —1/3]
—2/5 —2/5 0

The eigenvalues of T; are

A1~ 0.182266 + 0.386862/
A2 0.182266 — 0.386862/
A3 —0.364531.

Q

Q

The magnitudes of the eigenvalues of T; are

M|~ \/(0.182266)2 +(0.386862)2 ~ 0.427648
M| =~ \/(0.182266)2 +(—0.386862)2 ~ 0.427648
\s| ~ ]0.364531|.

The spectral radius of T; is p(T;) ~ 0.427648.



Solution (3 of 4)

The optimal choice of w for SOR is
2 N 2

~ = 1.05045.
1+/1=[o(TH? 1+ /1 —(0.427648)°

w =




Solution (3 of 4)

The optimal choice of w for SOR is

2 2
1T 1+1/1— (0.427648)

The SOR method for solving this linear system then takes the form:

= 1.05045.

x® = T x*M e,

x{) 0.0504504 —0.262613  0.262613 | [ x*7"
x|~ | -0.0176652 -0.142404 0258196 | | x{*~"
po 00286208 017018 —0.0523061 | | ,(k-1)

1.31306
+ | —0.940831

0.0536857



Solution (4 of 4)

(K)

(K)

k x1(k) X5 X3
0 | 0.0000 0.0000 0.0000
1]1.31306 —0.940831 0.0536857
2 | 150799  -0.84391 —0.0716521
3| 1.43979 -0.828794 —0.0430231
4 | 1.44678 —0.837133 —0.0439001
5| 1.44839 —0.835843 —0.0450734
6 | 144766 —0.835752 —0.0447464
7 1144776 —-0.835837 —0.0447689
8 | 1.44777  —-0.83582 —0.0447793
9 | 144776  —-0.83582 —0.0447757
10 | 1.44776 —0.835821 —0.0447761




Homework

» Read Section 7.4.
» Exercises: 1ac, 3ac, 7ac, 13



