Relaxation Techniques for Solving Linear Systems

MATH 375 Numerical Analysis

J Robert Buchanan

Department of Mathematics

Spring 2022

Objectives

In this lesson we will learn to

- accelerate the convergence of an iterative method for solving a linear system, and
- select the the iterative method with the most rapid convergence.

Residual Vector

Definition

Suppose vector $\tilde{\mathbf{x}} \in \mathbb{R}^n$ is an approximation to the solution of the linear system $A\mathbf{x} = \mathbf{b}$. The **residual vector** for $\tilde{\mathbf{x}}$ with respect to this system is $\mathbf{r} = \mathbf{b} - A\tilde{\mathbf{x}}$.

Residual Vector for Gauss-Seidel

We would like the residual vectors to converge as rapidly as possible to the zero vector. Let the approximate solution vector to the Gauss-Seidel method be expressed as

$$\mathbf{x}_{i}^{(k)} = \begin{bmatrix} x_{1}^{(k)} \\ x_{2}^{(k)} \\ \vdots \\ x_{i-1}^{(k)} \\ x_{i}^{(k-1)} \\ \vdots \\ x_{n}^{(k-1)} \end{bmatrix}$$

Express the residual vector $\mathbf{r} = \mathbf{b} - A\tilde{\mathbf{x}}$.

$$\mathbf{r}_i^{(k)} = \mathbf{b} - A \mathbf{x}_i^{(k)}$$

$$\begin{bmatrix} r_{1i}^{(k)} \\ r_{2i}^{(k)} \\ \vdots \\ r_{mi}^{(k)} \\ \vdots \\ r_{ni}^{(k)} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_{l-1}^{(k-1)} \\ x_i^{(k-1)} \\ \vdots \\ x_n^{(k-1)} \end{bmatrix}$$

$$\mathbf{r}_{i}^{(k)} = \mathbf{b} - A \mathbf{x}_{i}^{(k)} \\
\begin{bmatrix} r_{1i}^{(k)} \\ r_{2i}^{(k)} \\ \vdots \\ r_{mi}^{(k)} \\ \vdots \\ r_{ni}^{(k)} \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \\ \vdots \\ b_{n} \end{bmatrix} - \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_{1}^{(k)} \\ x_{2}^{(k)} \\ \vdots \\ x_{n}^{(k-1)} \\ x_{i}^{(k-1)} \\ \vdots \\ x_{n}^{(k-1)} \end{bmatrix}$$

Note: for $1 \le m \le n$

$$r_{mi}^{(k)} = b_m - \sum_{i=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{i=1}^{n} a_{mj} x_j^{(k-1)}.$$

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i}^n a_{mj} x_j^{(k-1)}$$

$$= b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - a_{mi} x_i^{(k-1)} - \sum_{j=i+1}^n a_{mj} x_j^{(k-1)}$$

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i}^{n} a_{mj} x_j^{(k-1)}$$

$$= b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - a_{mi} x_i^{(k-1)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)}$$

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - a_{ii} x_i^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}$$

$$a_{ii} x_i^{(k-1)} + r_{ii}^{(k)} = b_i - \sum_{i=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{i=i+1}^{n} a_{ij} x_j^{(k-1)}$$

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i}^{n} a_{mj} x_j^{(k-1)}$$

$$= b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - a_{mi} x_i^{(k-1)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)}$$

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - a_{ii} x_i^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}$$

$$a_{ii} x_i^{(k-1)} + r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}$$

$$a_{ii} x_i^{(k-1)} + r_{ii}^{(k)} = a_{ii} x_i^{(k)} \text{ (for Gauss-Seidel method)}$$

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}$$

Thus the Gauss-Seidel method can be thought of as choosing $x_i^{(k)}$ such that

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}.$$

Now consider the residual vector $\mathbf{r}_{i+1}^{(k)}$ associated with the approximate solution

$$\mathbf{x}_{i+1}^{(k)} = \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_i^{(k)} \\ x_{i+1}^{(k-1)} \\ \vdots \\ x_n^{(k-1)} \end{bmatrix}.$$

$$\mathbf{r}_{i+1}^{(k)} = \mathbf{b} - A \mathbf{x}_{i+1}^{(k)}$$

$$\begin{bmatrix} r_{1,i+1}^{(k)} \\ r_{2,i+1}^{(k)} \\ \vdots \\ r_{m,i+1}^{(k)} \\ \vdots \\ r_{n,i+1}^{(k)} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_i^{(k)} \\ x_{i+1}^{(k-1)} \\ \vdots \\ x_n^{(k-1)} \end{bmatrix}$$

$$\mathbf{r}_{i+1}^{(k)} = \mathbf{b} - A \mathbf{x}_{i+1}^{(k)} \\
\begin{bmatrix}
r_{1,i+1}^{(k)} \\ r_{2,i+1}^{(k)} \\ \vdots \\ r_{m,i+1}^{(k)} \\ \vdots \\ r_{n,i+1}^{(k)}
\end{bmatrix} = \begin{bmatrix}
b_1 \\ b_2 \\ \vdots \\ b_m \\ \vdots \\ b_n
\end{bmatrix} - \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix} \begin{bmatrix}
x_1^{(k)} \\ x_2^{(k)} \\ \vdots \\ x_i^{(k)} \\ x_{i+1}^{(k-1)} \\ \vdots \\ x_n^{(k-1)}
\end{bmatrix}$$

Note: for 1 < m < n

$$r_{m,i+1}^{(k)} = b_m - \sum_{j=1}^i a_{mj} x_j^{(k)} - \sum_{j=i+1}^n a_{mj} x_j^{(k-1)}.$$

$$r_{m,i+1}^{(k)} = b_m - \sum_{j=1}^{l} a_{mj} x_j^{(k)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)}$$

$$= b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - a_{mi} x_i^{(k)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)}$$

$$r_{m,i+1}^{(k)} = b_m - \sum_{j=1}^{l} a_{mj} x_j^{(k)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)}$$

$$= b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - a_{mi} x_i^{(k)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)}$$

$$r_{i,i+1}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k)}$$

$$= 0 \text{ (for Gauss-Seidel method)}$$

The Gauss-Seidel method chooses $x_{i+1}^{(k)}$ so that $r_{i+1}^{(k)} = 0$.

Reducing the Norm of the Residual Vector

We make the following modification to the earlier equation:

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}$$

in order the reduce the norm of the residual vector most efficiently. Let

$$x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}}$$

where $\omega > 0$.

Such a method is called a **relaxation method**.

- For $0 < \omega < 1$ these are called **under-relaxation methods**.
- ightharpoonup For 1 < ω these are called **over-relaxation methods**.

Successive Over-Relaxation (SOR)

Let $1 < \omega$, then

$$x_{i}^{(k)} = x_{i}^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}}$$

$$= x_{i}^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - a_{ii} x_{i}^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right]$$

$$= (1 - \omega) x_{i}^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right]$$

Matrix Formulation

The equation

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right]$$

is equivalent to

$$a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1-\omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} + \omega b_i$$

Matrix Formulation

The equation

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right]$$

is equivalent to

$$a_{ii}x_{i}^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_{j}^{(k)} = (1 - \omega)a_{ii}x_{i}^{(k-1)} - \omega \sum_{j=i+1}^{n} a_{ij}x_{j}^{(k-1)} + \omega b_{i}$$

$$(D - \omega L)\mathbf{x}^{(k)} = [(1 - \omega)D + \omega U]\mathbf{x}^{(k-1)} + \omega \mathbf{b}$$

$$\mathbf{x}^{(k)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]\mathbf{x}^{(k-1)} + \omega(D - \omega L)^{-1}\mathbf{b}$$

Matrix Formulation

The equation

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right]$$

is equivalent to

$$a_{ii}x_{i}^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_{j}^{(k)} = (1 - \omega)a_{ii}x_{i}^{(k-1)} - \omega \sum_{j=i+1}^{n} a_{ij}x_{j}^{(k-1)} + \omega b_{i}$$

$$(D - \omega L)\mathbf{x}^{(k)} = [(1 - \omega)D + \omega U]\mathbf{x}^{(k-1)} + \omega \mathbf{b}$$

$$\mathbf{x}^{(k)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]\mathbf{x}^{(k-1)} + \omega (D - \omega L)^{-1}\mathbf{b}$$

$$\mathbf{x}^{(k)} = T_{\omega}\mathbf{x}^{(k-1)} + \mathbf{c}_{\omega}$$

Example

Compare the Gauss-Seidel iterative method to the SOR method with $\omega=1.25$ for solving the following linear system. Use $\mathbf{x}^{(0)}=\mathbf{0}$ and let $\epsilon=10^{-3}$.

$$-2x_1 + x_2 + \frac{1}{2}x_3 = 4$$

$$x_1 - 2x_2 - \frac{1}{2}x_3 = -4$$

$$x_2 + 2x_3 = 0$$

The exact solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -16/11 \\ 16/11 \\ -8/11 \end{bmatrix} \approx \begin{bmatrix} -1.454545 \\ 1.454545 \\ -0.727273 \end{bmatrix}.$$

Solution (1 of 5)

The Gauss-Seidel method can be expressed in matrix form as

$$\mathbf{x}^{(k)} = T_g \mathbf{x}^{(k-1)} + \mathbf{c}_g = \begin{bmatrix} 0 & 1/2 & 1/4 \\ 0 & 1/4 & -1/8 \\ 0 & -1/8 & 1/16 \end{bmatrix} \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} + \begin{bmatrix} -2 \\ 1 \\ -1/2 \end{bmatrix}.$$

Solution (2 of 5)

With $\omega = 1.25$ then

$$D - \omega L = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} - \frac{5}{4} \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 5/4 & -2 & 0 \\ 0 & 5/4 & 2 \end{bmatrix}$$

$$(D - \omega L)^{-1} = \begin{bmatrix} -1/2 & 0 & 0 \\ -5/16 & -1/2 & 0 \\ 25/128 & 5/16 & 1/2 \end{bmatrix}$$

$$(1 - \omega)D + \omega U = \frac{-1}{4} \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix} + \frac{5}{4} \begin{bmatrix} 0 & -1 & -1/2 \\ 0 & 0 & 1/2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1/2 & -5/4 & -5/8 \\ 0 & 1/2 & 5/8 \\ 0 & 0 & -1/2 \end{bmatrix}$$

Solution (3 of 5)

$$T_{\omega} = (D - \omega L)^{-1} [(1 - \omega)D + \omega U]$$

$$= \begin{bmatrix} -1/2 & 0 & 0 \\ -5/16 & -1/2 & 0 \\ 25/128 & 5/16 & 1/2 \end{bmatrix} \begin{bmatrix} 1/2 & -5/4 & -5/8 \\ 0 & 1/2 & 5/8 \\ 0 & 0 & -1/2 \end{bmatrix}$$

$$= \frac{1}{1024} \begin{bmatrix} -256 & 640 & 320 \\ -160 & 144 & -120 \\ 100 & -90 & -181 \end{bmatrix}$$

$$\mathbf{c}_{\omega} = \omega (D - \omega L)^{-1} \mathbf{b}$$

$$= \frac{5}{4} \begin{bmatrix} -1/2 & 0 & 0 \\ -5/16 & -1/2 & 0 \\ 25/128 & 5/16 & 1/2 \end{bmatrix} \begin{bmatrix} 4 \\ -4 \\ 0 \end{bmatrix}$$

$$= \frac{1}{128} \begin{bmatrix} -320 \\ 120 \\ -75 \end{bmatrix}$$

Solution (4 of 5)

The SOR method (with $\omega = 1.25$) can be expressed in matrix form as

$$\mathbf{x}^{(k)} = T_{\omega} \mathbf{x}^{(k-1)} + \mathbf{c}_{\omega} = \frac{1}{1024} \begin{bmatrix} -256 & 640 & 320 \\ -160 & 144 & -120 \\ 100 & -90 & -181 \end{bmatrix} \begin{bmatrix} x_1^{(k-1)} \\ x_2^{(k-1)} \\ x_3^{(k-1)} \end{bmatrix} + \frac{1}{128} \begin{bmatrix} -320 \\ 120 \\ -75 \end{bmatrix}$$

Solution (5 of 5)

	Gauss-Seidel			SOR ($\omega=$ 1.25)		
k	$X_{1}^{(k)}$	$X_{2}^{(k)}$	$x_{3}^{(k)}$	$X_1^{(k)}$	$X_2^{(k)}$	$X_3^{(k)}$
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1	-2.0000	1.0000	-0.5000	-2.5000	0.9375	-0.5859
2	-1.6250	1.3125	-0.6523	-1.4722	1.5286	-0.8089
3	-1.5078	1.4102	-0.7051	-1.4294	1.4773	-0.7211
4	-1.4712	1.4407	-0.7203	-1.4447	1.4531	-0.7279
5	-1.4598	1.4502	-0.7251	-1.4581	1.4529	-0.7261
6	-1.4562	1.4532	-0.7266	-1.4543	1.4547	-0.7277
7	-1.4551	1.4541	-0.7271	-1.4546	1.4546	-0.7272

Choosing ω Optimally

Comment: there is no known method for choosing the best value of ω for the general $n \times n$ matrix A. For some commonly occurring special cases the optimal ω can be calculated.

Choosing ω Optimally

Comment: there is no known method for choosing the best value of ω for the general $n \times n$ matrix A. For some commonly occurring special cases the optimal ω can be calculated.

Theorem (Kahan)

If $a_{ii} \neq 0$ for i = 1, 2, ..., n then $\rho(T_{\omega}) \geq |\omega - 1|$. Thus the SOR method can converge only if $0 < \omega < 2$.

Positive Definite A

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and $0 < \omega < 2$ then the SOR method will converge for any choice of initial approximation vector $\mathbf{x}^{(0)}$.

Positive Definite A

Theorem (Ostrowski-Reich)

If A is a positive definite matrix and $0 < \omega < 2$ then the SOR method will converge for any choice of initial approximation vector $\mathbf{x}^{(0)}$.

Theorem

If A is positive definite and tridiagonal, then $\rho(T_g) = [\rho(T_j)]^2 < 1$ and the optimal choice of ω for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - \left[\rho(T_j)\right]^2}}.$$

For this choice of ω , then $\rho(T_{\omega}) = \omega - 1$.

Example

Find the optimal choice of ω for solving the following linear system.

$$4x_1 + x_2 - x_3 = 5$$

-x₁ + 3x₂ + x₃ = -4
2x₁ + 2x₂ + 5x₃ = 1

The exact solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 97/67 \\ -56/67 \\ -3/67 \end{bmatrix} \approx \begin{bmatrix} 1.447761 \\ -0.835821 \\ -0.044776 \end{bmatrix}.$$

Solution (1 of 4)

In this positive definite, tridiagonal system

$$A = \begin{bmatrix} 4 & 1 & -1 \\ -1 & 3 & 1 \\ 2 & 2 & 5 \end{bmatrix}$$

$$D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$L = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ -2 & -2 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Solution (2 of 4)

$$T_{j} = D^{-1}(L+U) = \begin{bmatrix} 1/4 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/5 \end{bmatrix} \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -2 & -2 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -1/4 & 1/4 \\ 1/3 & 0 & -1/3 \\ -2/5 & -2/5 & 0 \end{bmatrix}$$

The eigenvalues of T_i are

$$\lambda_1 \approx 0.182266 + 0.386862i$$

 $\lambda_2 \approx 0.182266 - 0.386862i$
 $\lambda_3 \approx -0.364531.$

The magnitudes of the eigenvalues of T_j are

$$\begin{array}{lcl} |\lambda_1| & \approx & \sqrt{(0.182266)^2 + (0.386862)^2} \approx 0.427648 \\ |\lambda_2| & \approx & \sqrt{(0.182266)^2 + (-0.386862)^2} \approx 0.427648 \\ |\lambda_3| & \approx & |0.364531|. \end{array}$$

The spectral radius of T_i is $\rho(T_i) \approx 0.427648$.

Solution (3 of 4)

The optimal choice of ω for SOR is

$$\omega = \frac{2}{1 + \sqrt{1 - \left[\rho(T_j)\right]^2}} \approx \frac{2}{1 + \sqrt{1 - \left(0.427648\right)^2}} = 1.05045.$$

Solution (3 of 4)

The optimal choice of ω for SOR is

$$\omega = \frac{2}{1 + \sqrt{1 - \left[\rho(T_j)\right]^2}} \approx \frac{2}{1 + \sqrt{1 - \left(0.427648\right)^2}} = 1.05045.$$

The SOR method for solving this linear system then takes the form:

Solution (4 of 4)

k	$x_{1}^{(k)}$	$x_2^{(k)}$	$x_{3}^{(k)}$
0	0.0000	0.0000	0.0000
1	1.31306	-0.940831	0.0536857
2	1.50799	-0.84391	-0.0716521
3	1.43979	-0.828794	-0.0430231
4	1.44678	-0.837133	-0.0439001
5	1.44839	-0.835843	-0.0450734
6	1.44766	-0.835752	-0.0447464
7	1.44776	-0.835837	-0.0447689
8	1.44777	-0.83582	-0.0447793
9	1.44776	-0.83582	-0.0447757
10	1.44776	-0.835821	-0.0447761

Homework

- Read Section 7.4.
- Exercises: 1ac, 3ac, 7ac, 13