# Convergence of Fourier Series

MATH 467 Partial Differential Equations

J Robert Buchanan

Department of Mathematics

Fall 2022

### **Objectives**

In this lesson we will explore the questions:

- What are the conditions that guarantee the Fourier series of a given function f(x) converges?
- ▶ If the Fourier series of a given function f(x) converges, does it converge to the value of f(x) at a given x?

#### Short Answer to First Question

A Fourier series will converge for a large class of functions, though we will prove convergence only for the class of **piecewise smooth** functions.

#### Short Answer to First Question

A Fourier series will converge for a large class of functions, though we will prove convergence only for the class of **piecewise smooth** functions.

#### Definition

A function f(x) is **piecewise continuous** on [a,b] (or (a,b)) if there are finitely many points  $a = x_0 < x_1 < x_2 < x_3 < \cdots < x_n = b$ , such that

- ► f(x) is continuous on  $(x_{i-1}, x_i)$  for all i = 1, 2, ..., n,
- ▶ the one-sided limits  $\lim_{x \to x_i^-} f(x)$  and  $\lim_{x \to x_i^+} f(x)$  exist for all i = 1, 2, ..., n 1, and
- ▶ the one-sided limits  $\lim_{x \to a^+} f(x)$  and  $\lim_{x \to b^-} f(x)$  both exist.

#### Remarks

- The limits mentioned in the definition of piecewise continuous must be finite, real numbers.
- Function f(x) is piecewise continuous on  $(-\infty, \infty)$  if it is piecewise continuous on every finite interval [a, b].
- Function f(x) is **piecewise smooth** on [a,b] if f'(x) is piecewise continuous on [a,b].
- Since any piecewise continuous function is integrable, the Fourier coefficients of any piecewise continuous function are well-defined (but this is not enough to show the Fourier series converges).

#### **Notation**

For any  $c \in [a, b]$ , define

$$\lim_{x\to c^+} f(x) = f(c+) \quad \text{and} \quad \lim_{x\to c^-} f(x) = f(c-).$$

Function f(x) is continuous at c if and only if f(c+) = f(c-) = f(c).

## Examples

Determine which of the following functions is piecewise smooth, piecewise continuous, or neither on [-L, L] for some L > 0.

$$f_{1}(x) = \begin{cases} L & \text{if } -L \leq x < 0 \\ x & \text{if } 0 \leq x \leq L \end{cases}$$

$$f_{2}(x) = \begin{cases} x^{2} & \text{if } -L \leq x < 0 \\ x - 1 & \text{if } 0 \leq x \leq L \end{cases}$$

$$f_{3}(x) = \cos \frac{1}{x}$$

$$f_{4}(x) = x \cos \frac{1}{x}$$

$$f_{5}(x) = x^{3/5}$$

$$f_{6}(x) = x^{6/5}$$

$$f_{7}(x) = \frac{1}{x}$$

## Discussion (1 of 7)

$$f_1(x) = \begin{cases} L & \text{if } -L \le x < 0 \\ x & \text{if } 0 \le x \le L \end{cases}$$

Function  $f_1(x)$  is piecewise continuous and piecewise smooth on [-L, L] with

$$f_1(-L+) = f_1(0-) = f_1(L-) = L$$

$$f_1(0+) = 0$$

$$f'_1(x) = \begin{cases} 0 & \text{if } -L < x < 0 \\ 1 & \text{if } 0 < x < L \end{cases}$$

$$f'_1(-L+) = f'_1(0-) = 0$$

$$f'_1(0+) = f'_1(L-) = 1.$$

## Discussion (2 of 7)

$$f_2(x) = \begin{cases} x^2 & \text{if } -L \le x < 0 \\ x - 1 & \text{if } 0 \le x \le L \end{cases}$$

Function  $f_2(x)$  is piecewise continuous and piecewise smooth on [-L,L] with

$$f_{2}(-L+) = L^{2}$$

$$f_{2}(0-) = 0$$

$$f_{2}(0+) = -1$$

$$f_{2}(L-) = L - 1$$

$$f'_{2}(x) = \begin{cases} 2x & \text{if } -L < x < 0 \\ 1 & \text{if } 0 < x < L \end{cases}$$

$$f'_{2}(-L+) = -2L$$

$$f'_{2}(0-) = 0$$

$$f'_{2}(0+) = f'_{2}(L-) = 1.$$

## Discussion (3 of 7)

$$f_3(x)=\cos\frac{1}{x}$$

Function  $f_3(x)$  is neither piecewise continuous nor piecewise smooth on [-L, L] since  $f_3(0-)$  does not exist.

$$f_3'(x) = \frac{1}{x^2} \sin \frac{1}{x}$$

Note that  $f_3'(0-)$  does not exist.

## Discussion (4 of 7)

$$f_4(x) = x \cos \frac{1}{x}$$

Function  $f_4(x)$  is piecewise continuous but not piecewise smooth on [-L, L].

$$f_4(-L+) = -L \cos \frac{1}{L}$$

$$f_4(0-) = f_4(0+) = 0$$

$$f_4(L-) = L \cos \frac{1}{L}$$

$$f_4'(x) = \cos\frac{1}{x} - \frac{1}{x}\sin\frac{1}{x}$$

Note that  $f'_4(0-)$  does not exist.

## Discussion (5 of 7)

$$f_5(x)=x^{3/5}$$

Function  $f_5(x)$  is continuous but not piecewise smooth on [-L, L].

$$f_5'(x) = \frac{3}{5x^{2/5}}$$

Note that  $f_5'(0-)$  does not exist.

## Discussion (6 of 7)

$$f_6(x)=x^{6/5}$$

Function  $f_6(x)$  is continuous and piecewise smooth on [-L, L].

$$f_6'(x) = \frac{6}{5}x^{1/5}$$

## Discussion (7 of 7)

$$f_7(x)=\frac{1}{x}$$

Function  $f_7(x)$  is neither piecewise continuous nor piecewise smooth on [-L, L]. Note that  $f_7(0-)$  does not exist.

$$f_7'(x)=-\frac{1}{x^2}$$

Note that  $f_7'(0-)$  does not exist.

### **Dirichlet Convergence Theorem**

#### **Theorem**

Assume that f(x) is a piecewise smooth function on the interval [-L,L] extended to  $(-\infty,\infty)$  periodically with period 2L. Then the Fourier series of f(x) converges for all x to the value

$$\frac{1}{2}\left(f(x+)+f(x-)\right).$$

### **Dirichlet Convergence Theorem**

#### **Theorem**

Assume that f(x) is a piecewise smooth function on the interval [-L,L] extended to  $(-\infty,\infty)$  periodically with period 2L. Then the Fourier series of f(x) converges for all x to the value

$$\frac{1}{2}\left(f(x+)+f(x-)\right).$$

#### Remarks:

- If f is continuous at  $x = x_0$  then the Fourier series converges to  $f(x_0)$  when  $x = x_0$ .
- If f has a jump or removable discontinuity at  $x = x_0$ , the Fourier series converges to the average of the limits of f from the left and right at  $x = x_0$ .

## Example

Consider the piecewise-defined function

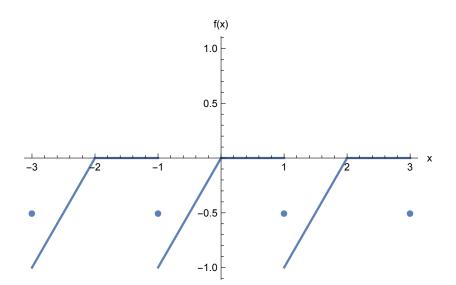
$$f(x) = \begin{cases} x & \text{if } -1 \le x < 0, \\ 0 & \text{if } 0 \le x < 1. \end{cases}$$

Its Fourier series representation is

$$f(x) \sim -\frac{1}{4} + \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n\pi} \sin(n\pi x) + \sum_{n=1}^{\infty} \frac{2}{(2n-1)^2 \pi^2} \cos((2n-1)\pi x).$$

Sketch the graph of the Fourier series.

# Graph



### Application: Finding the Sum of a Series

If an infinite series is made up of Fourier coefficients for some function, the function can be used to sum the series.

## Application: Finding the Sum of a Series

If an infinite series is made up of Fourier coefficients for some function, the function can be used to sum the series.

#### Example

- 1. Find the Fourier series for f(x) = |x| on  $[-\pi, \pi]$ .
- 2. Use the Fourier series and f(x) to find

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$$

#### Solution

Function f(x) = |x| is an even function.

$$a_0 = \frac{2}{\pi} \int_0^{\pi} x \, dx = \pi$$
 $a_n = \frac{2}{\pi} \int_0^{\pi} x \cos(nx) \, dx = \begin{cases} -4/(n^2 \pi) & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$ 

Fourier series:

$$|x| = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos((2n-1)x)$$

$$0 = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos((2n-1)(0))$$

$$\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

## Application: Finding the Sum of a Series

Consider the function 
$$f(x) = \begin{cases} -1 & \text{if } -\pi \leq x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } 0 < x \leq \pi. \end{cases}$$

- 1. Find the Fourier series for f(x) on  $[-\pi, \pi]$ .
- 2. Sketch the graph of the Fourier series for f(x).
- 3. Use the Fourier series and f(x) to find

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{2k-1}.$$

#### Solution

Function f(x) is an odd function.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

$$= \frac{-1}{\pi} \int_{-\pi}^{0} \sin(nx) dx + \frac{1}{\pi} \int_{0}^{\pi} \sin(nx) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \sin(nx) dx$$

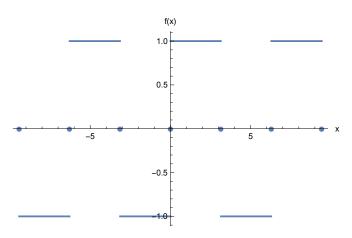
$$= \frac{2}{n\pi} (1 - \cos(n\pi))$$

$$= \begin{cases} 4/(n\pi) & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$$

Fourier series:

$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin((2n-1)x).$$

## Graph



**Question**: why does the Fourier series converge to f(x) on  $(-\pi, \pi)$ ?

## Summing the Series

Let 
$$x = \pi/2$$
.

$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin((2n-1)x)$$

## Summing the Series

Let 
$$x = \pi/2$$
.

$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin((2n-1)x)$$
$$1 = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin\left((2n-1)\frac{\pi}{2}\right)$$

## Summing the Series

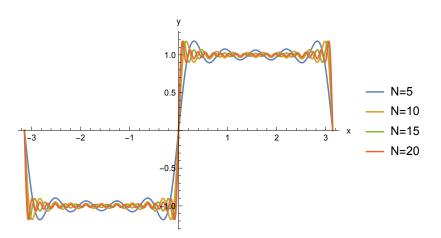
Let 
$$x = \pi/2$$
.

$$f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin((2n-1)x)$$

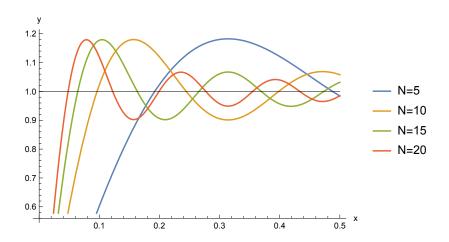
$$1 = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{2n-1} \sin\left((2n-1)\frac{\pi}{2}\right)$$

$$\frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$$

$$-\frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$$



### **Detailed View**



#### Gibbs Phenomenon

- Oscillation of the partial sums of a Fourier series near a jump discontinuity is called the Gibbs phenomenon.
- It was first mathematically explained by Josiah Willard Gibbs, though others had considered it (including Albert A. Michelson of the Michelson-Morley experiment).
- We will outline an explanation of the Gibbs phenomenon.

Denote the Nth partial sum of the Fourier series as

$$s_N(x) = \frac{4}{\pi} \sum_{n=1}^N \frac{1}{2n-1} \sin((2n-1)x).$$

A calculus argument can locate the maxima in the graph of  $s_N(x)$  near x = 0.

Denote the Nth partial sum of the Fourier series as

$$s_N(x) = \frac{4}{\pi} \sum_{n=1}^N \frac{1}{2n-1} \sin((2n-1)x).$$

A calculus argument can locate the maxima in the graph of  $s_N(x)$  near x = 0.

$$s'_N(x) = \frac{4}{\pi} \sum_{n=1}^N \cos((2n-1)x)$$

Denote the Nth partial sum of the Fourier series as

$$s_N(x) = \frac{4}{\pi} \sum_{n=1}^N \frac{1}{2n-1} \sin((2n-1)x).$$

A calculus argument can locate the maxima in the graph of  $s_N(x)$  near x = 0.

$$s'_{N}(x) = \frac{4}{\pi} \sum_{n=1}^{N} \cos((2n-1)x)$$

$$(\sin x)s'_{N}(x) = \frac{4}{\pi} \sum_{n=1}^{N} \sin x \cos((2n-1)x)$$

Denote the Nth partial sum of the Fourier series as

$$s_N(x) = \frac{4}{\pi} \sum_{n=1}^N \frac{1}{2n-1} \sin((2n-1)x).$$

A calculus argument can locate the maxima in the graph of  $s_N(x)$  near x = 0.

$$s'_{N}(x) = \frac{4}{\pi} \sum_{n=1}^{N} \cos((2n-1)x)$$

$$(\sin x)s'_{N}(x) = \frac{4}{\pi} \sum_{n=1}^{N} \sin x \cos((2n-1)x)$$

Use a product-to-sum formula on the right-hand side.

#### **Critical Numbers**

$$(\sin x)s'_N(x) = \frac{4}{\pi} \sum_{n=1}^N \cos((2n-1)x) \sin x$$
$$= \frac{2}{\pi} \sum_{n=1}^N (\sin(2nx) - \sin(2(n-1)x))$$

#### **Critical Numbers**

$$(\sin x)s'_{N}(x) = \frac{4}{\pi} \sum_{n=1}^{N} \cos((2n-1)x) \sin x$$
$$= \frac{2}{\pi} \sum_{n=1}^{N} (\sin(2nx) - \sin(2(n-1)x))$$
$$= \frac{2}{\pi} \sin(2Nx)$$

## **Critical Numbers**

$$(\sin x)s'_{N}(x) = \frac{4}{\pi} \sum_{n=1}^{N} \cos((2n-1)x) \sin x$$
$$= \frac{2}{\pi} \sum_{n=1}^{N} (\sin(2nx) - \sin(2(n-1)x))$$
$$= \frac{2}{\pi} \sin(2Nx)$$

If  $0 < x < \pi$  then  $s_N'(x) = 0$  if and only if  $\sin(2Nx) = 0$ . Thus the critical numbers in  $(0, \pi)$  are

$$x = \frac{m\pi}{2N}$$
 for  $m = 1, 2, ..., 2N - 1$ .

## Maxima or Minima?

Apply the Second Derivative Test to determine whether the critical numbers are maxima or minima.

$$(\sin x)s'_N(x) = \frac{2}{\pi}\sin(2Nx)$$
$$(\cos x)s'_N(x) + (\sin x)s''_N(x) = \frac{4N}{\pi}\cos(2Nx)$$

Let  $x = \pi/(2N)$ , the critical number closest to x = 0.

$$\left(\cos\frac{\pi}{2N}\right)s_N'\left(\frac{\pi}{2N}\right) + \left(\sin\frac{\pi}{2N}\right)s_N''\left(\frac{\pi}{2N}\right) = \frac{4N}{\pi}\cos\pi$$
$$\left(\sin\frac{\pi}{2N}\right)s_N''\left(\frac{\pi}{2N}\right) = -\frac{4N}{\pi}$$

This implies  $s_N(\pi/2N)$  is a local maximum.

## Value of Local Maximum

$$s_N\left(\frac{\pi}{2N}\right) = \frac{4}{\pi} \sum_{n=1}^N \frac{1}{2n-1} \sin\left(\frac{(2n-1)\pi}{2N}\right)$$
$$= \frac{2}{\pi} \sum_{n=1}^N \frac{2N\pi}{(2n-1)N\pi} \sin\left(\frac{(2n-1)\pi}{2N}\right)$$

## Value of Local Maximum

$$s_{N}\left(\frac{\pi}{2N}\right) = \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin\left(\frac{(2n-1)\pi}{2N}\right)$$
$$= \frac{2}{\pi} \sum_{n=1}^{N} \frac{2N\pi}{(2n-1)N\pi} \sin\left(\frac{(2n-1)\pi}{2N}\right)$$
$$= \frac{2}{\pi} \sum_{n=1}^{N} \frac{2N}{(2n-1)\pi} \sin\left(\frac{(2n-1)\pi}{2N}\right) \frac{\pi}{N}$$

### Value of Local Maximum

$$s_{N}\left(\frac{\pi}{2N}\right) = \frac{4}{\pi} \sum_{n=1}^{N} \frac{1}{2n-1} \sin\left(\frac{(2n-1)\pi}{2N}\right)$$
$$= \frac{2}{\pi} \sum_{n=1}^{N} \frac{2N\pi}{(2n-1)N\pi} \sin\left(\frac{(2n-1)\pi}{2N}\right)$$
$$= \frac{2}{\pi} \sum_{n=1}^{N} \frac{2N}{(2n-1)\pi} \sin\left(\frac{(2n-1)\pi}{2N}\right) \frac{\pi}{N}$$

**Remark**: the term inside the summation is a Riemann sum with  $\Delta x = \pi/N$ ,  $w_n = (2n-1)\pi/(2N)$ , and  $f(x) = \frac{1}{x} \sin x$ .

### Limit of Riemann Sum

$$\lim_{N \to \infty} s_N \left( \frac{\pi}{2N} \right) = \lim_{N \to \infty} \frac{2}{\pi} \sum_{n=1}^N \frac{2N}{(2n-1)\pi} \sin \left( \frac{(2n-1)\pi}{2N} \right) \frac{\pi}{N}$$
$$= \frac{2}{\pi} \int_0^\pi \frac{\sin x}{x} dx$$
$$\approx 1.179$$

#### Limit of Riemann Sum

$$\lim_{N \to \infty} s_N \left( \frac{\pi}{2N} \right) = \lim_{N \to \infty} \frac{2}{\pi} \sum_{n=1}^N \frac{2N}{(2n-1)\pi} \sin \left( \frac{(2n-1)\pi}{2N} \right) \frac{\pi}{N}$$
$$= \frac{2}{\pi} \int_0^\pi \frac{\sin x}{x} dx$$
$$\approx 1.179$$

**Remark**: thus no matter how many terms are included in the Fourier series there is an  $x \to 0^+$  for which  $f(x) \approx 1.179 > 1$ .

# Pointwise vs. Uniform Convergence

#### Definition

Suppose  $\{f_n\}_{n=1}^{\infty}$  is a sequence of functions defined on domain D and the sequence of values  $\{f_n(x)\}_{n=1}^{\infty}$  converges for each  $x \in S \subset D$ . Then  $\{f_n\}_{n=1}^{\infty}$  is said to **converge pointwise on** S **to** f defined by

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 for  $x \in S$ .

While the Fourier series converges **pointwise** to f(x) it does not converge **uniformly** to f(x).

# **Uniform Convergence**

#### Definition

A sequence of functions  $\{f_n\}_{n=1}^\infty$  defined on domain D converges uniformly to f on D provided there exists a sequence of positive real numbers  $\{\epsilon_n\}_{n=1}^\infty$  for which  $\lim_{n\to\infty}\epsilon_n=0$  and

$$|f_n(x)-f(x)|<\epsilon_n$$

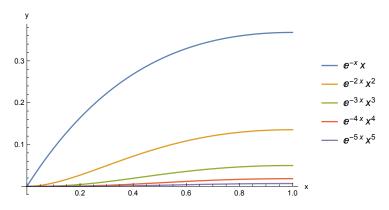
for all  $n \in \mathbb{N}$  and for all  $x \in D$ .

**Remark**: an infinite series converges uniformly if its sequence of partial sums converges uniformly.



### Illustration

Sequence  $\{x^n e^{-nx}\}_{n=1}^{\infty}$  converges uniformly to f(x) = 0 on  $D = [0, \infty)$ .



- ▶ Let  $f_n(x) = x^n e^{-nx}$  for  $n \in \mathbb{N}$  and  $x \ge 0$ .
- ▶ By l'Hôpital's Rule  $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{x^n}{e^{nx}} = 0$  for all  $x \ge 0$ , thus  $f_n(x) \to 0$  pointwise for all  $x \ge 0$ . Define f(x) = 0.
- ▶ The First Derivative Test shows that  $0 \le f_n(x) \le f_n(1) = e^{-n}$  for all  $x \ge 0$ , so let  $\epsilon_n = e^{-n}$  and note that  $\lim_{n \to \infty} \epsilon_n = 0$ .
- ► The sequence of functions  $f_n(x) \to f(x)$  uniformly for  $x \ge 0$  since  $|f_n(x) f(0)| = f_n(x) \le \epsilon_n$  for all  $n \in \mathbb{N}$ .

# Examples (1 of 3)

Sequence 
$$\{x^n\}_{n=1}^{\infty}$$
 converges pointwise on  $[0,1]$  to  $f(x) = \left\{ \begin{array}{ll} 0 & \text{if } 0 \leq x < 1 \\ 1 & \text{if } x = 1 \end{array} \right.$  but does not converge uniformly.

- Let  $x \in [0, 1)$  then  $\lim_{n \to \infty} x^n = 0$ . Also,  $\lim_{n \to \infty} 1^n = 1$ , so  $x^n \to f(x)$  pointwise for  $0 \le x \le 1$ .
- Let  $\{\epsilon_n\}_{n=1}^{\infty}$  be any sequence of positive real numbers such that  $\lim_{n\to\infty}\epsilon_n=0$ . Without loss of generality assume  $0<\epsilon_n<1$  for all  $n\in\mathbb{N}$ .
- Note that  $0 < 1 \epsilon_n < 1$  for all  $n \in \mathbb{N}$  and thus  $0 < (1 \epsilon_n)^{1/n} < 1$  as well. Therefore for all  $n \in \mathbb{N}$  there exists  $x_n$  such that  $(1 \epsilon_n)^{1/n} < x_n < 1$ .
- ► Consider  $x_n^n > 1 \epsilon_n > 0$  and thus  $x_n^n \not\to 0$  as  $n \to \infty$  and the convergence is not uniform.

# Examples (2 of 3)

The sequence  $\{x^n\}_{n=1}^{\infty}$  converges uniformly to f(x) = 0 on [0, b] for any 0 < b < 1.

- As in the previous example  $x^n \to 0$  pointwise for all  $0 \le x \le b < 1$ .
- ▶ Define  $\epsilon_n = b^n$  for all  $n \in \mathbb{N}$ , then  $\lim_{n \to \infty} \epsilon_n = 0$ .
- Note that  $x^n \le b^n$  for all  $0 \le x \le b$ , or equivalently,  $|x^n 0| \le \epsilon_n$  for all  $0 \le x \le b$ . Hence the convergence is uniform.

# Examples (3 of 3)

The infinite series  $\sum_{n=1}^{\infty} x^n$  converges pointwise on (-1,1) to  $f(x) = \frac{x}{1-x}$  but not uniformly.

► The Nth partial sum of the series is

$$f_N(x) = x + x^2 + \dots + x^N = \frac{1 - x^{N+1}}{1 - x} - 1.$$

▶ For any -1 < x < 1,

$$\lim_{N\to\infty} f_N(x) = \lim_{N\to\infty} \left[ \frac{1-x^{N+1}}{1-x} - 1 \right] = \frac{1}{1-x} - 1 = \frac{x}{1-x} = f(x),$$

(this proves pointwise convergence).

The Nth partial sum of the series is

$$f_N(x) = x + x^2 + \dots + x^N = \frac{1 - x^{N+1}}{1 - x} - 1.$$

► For any -1 < x < 1,

$$\lim_{N\to\infty} f_N(x) = \lim_{N\to\infty} \left[ \frac{1-x^{N+1}}{1-x} - 1 \right] = \frac{1}{1-x} - 1 = \frac{x}{1-x} = f(x),$$

(this proves pointwise convergence).

Consider

$$\lim_{x \to 1^{-}} |f_{N}(x) - f(x)| = \lim_{x \to 1^{-}} \left| \frac{1 - x^{N+1}}{1 - x} - 1 - \frac{x}{1 - x} \right|$$
$$= \lim_{x \to 1^{-}} \frac{x^{N+1}}{1 - x} = \infty,$$

so the convergence is not uniform.



# Properties Preserved by Uniform Convergence

Suppose the series  $\sum_{n=1}^{\infty} u_n(x)$  converges uniformly to its sum u(x) on [a,b].

- ▶ If for each n,  $u_n(x)$  is continuous on [a, b], then the sum u(x) is continuous on [a, b].
- ▶ If for each n,  $u_n(x)$  is integrable on [a, b], then the sum u(x) is integrable on [a, b], and

$$\int_{a}^{b} u(x) dx = \int_{a}^{b} \left( \sum_{n=1}^{\infty} u_{n}(x) \right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x) dx.$$

If for each n,  $u'_n(x)$  exists and  $\sum_{n=1}^{\infty} u'_n(x)$  converges uniformly on [a,b], then the sum u(x) is differentiable on [a,b] and the derivative can be obtained by differentiating the series term by term,

$$u'(x) = \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x) \quad \text{for all } x \in [a,b].$$

#### Weierstrass M-Test

The following theorem provides a convenient means of determining whether an infinite series converges uniformly.

#### **Theorem**

Let  $\sum_{n=1}^{\infty} u_n(x)$  be a series of functions defined on an interval [a,b] and suppose that for each n there is a non-negative number  $M_n$  such

that 
$$|u_n(x)| \le M_n$$
 for all  $x \in [a,b]$  and  $\sum_{n=1}^{\infty} M_n$  converges, then

$$\sum_{n=1}^{\infty} u_n(x) \text{ converges uniformly on } [a,b].$$

# Example

Show that 
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$$
 converges uniformly on  $(-\infty, \infty)$ .

# Example

Show that  $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx)$  converges uniformly on  $(-\infty, \infty)$ .

Since  $\frac{1}{n^2}|\cos(nx)| \leq \frac{1}{n^2}$  for all  $x \in \mathbb{R}$  and

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converges, then the series converges uniformly for all  $x \in \mathbb{R}$ .



### Homework

- ► Read Sections 3.6–3.7
- ► Exercises: 11–19