Laplace's Equation on a Disk

MATH 467 Partial Differential Equations

J Robert Buchanan

Department of Mathematics

Fall 2022

Laplace's Equation on a Disk

Consider the Dirichlet boundary value problem:

$$\Delta u = 0$$
 for $x^2 + y^2 < a^2$
 $u(x, y) = \phi(x, y)$ for $x^2 + y^2 = a^2$.

Remark: since the boundary of Ω is not a rectangle, we cannot use separation of variables directly. Instead we must convert to polar coordinates before using separation of variables.

Laplace's Equation on a Disk

Consider the Dirichlet boundary value problem:

$$\Delta u = 0$$
 for $x^2 + y^2 < a^2$
 $u(x, y) = \phi(x, y)$ for $x^2 + y^2 = a^2$.

Remark: since the boundary of Ω is not a rectangle, we cannot use separation of variables directly. Instead we must convert to polar coordinates before using separation of variables.

In polar coordinates (r, θ) the Laplacian operator can be expressed as

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta},$$

for r > 0.

Dirichlet BVP in Polar Coordinates

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
 for $0 < r < a$ and $-\infty < \theta < \infty$
 $u(a, \theta) = f(\theta) = \phi(a\cos\theta, a\sin\theta)$

Remarks:

- ▶ The boundary conditions are periodic in θ with period 2π .
- ▶ The solution $u(r, \theta)$ should be 2π -periodic in θ .
- ► The Laplacian is not defined for r = 0, but we wish for the solution to remain finite as $r \to 0^+$.

Separation of Variables in Polar Coordinates

Assume $u(r, \theta) = R(r)T(\theta)$, then

$$R''(r)T(\theta) + \frac{1}{r}R'(r)T(\theta) + \frac{1}{r^2}R(r)T''(\theta) = 0$$

$$\frac{R''(r)T(\theta)}{R(r)T(\theta)} + \frac{1}{r}\frac{R'(r)T(\theta)}{R(r)T(\theta)} + \frac{1}{r^2}\frac{R(r)T''(\theta)}{R(r)T(\theta)} = 0$$

$$\frac{r^2R''(r)}{R(r)} + \frac{r}{R(r)}\frac{R'(r)}{R(r)} = -\frac{T''(\theta)}{T(\theta)} = c$$

where c is a constant.

Implied Ordinary Differential Equations

$$T''(\theta) + c T(\theta) = 0$$

case c = 0: the only nontrivial 2π -periodic solution is

$$T_0(\theta) = A_0$$

case $c = \lambda^2 > 0$: the only nontrivial 2π -periodic solution is

$$T_n(\theta) = A_n \cos(n\theta) + B_n \sin(n\theta)$$

and
$$c = \lambda_n^2 = n^2$$
 for $n \in \mathbb{N}$.

Euler's Equation

The implied ordinary differential equation for R(r) is

$$r^2R''(r) + rR'(r) - cR(r) = 0,$$

which is known as Euler's equation.

case c = 0:

$$0 = r^2 R''(r) + r R'(r)$$

$$R_0(r) = C_0 \ln r + D_0$$

case $c = n^2 > 0$:

$$0 = r^{2}R''(r) + rR'(r) - n^{2}R(r)$$

 $R_{n}(r) = C_{n}r^{-n} + D_{n}r^{n}$

In order for the product solution to be bounded as $r \to 0^+$ we must choose $C_0 = C_1 = \cdots = 0$.

Product Solution

Define the function

$$u_n(r,\theta) = R_n(r)T_n(\theta) = r^n [A_n \cos(n\theta) + B_n \sin(n\theta)]$$

for n = 0, 1, ...

By the Principle of Superposition the function

$$u(r,\theta) = A_0 + \sum_{n=1}^{\infty} r^n \left[A_n \cos(n\theta) + B_n \sin(n\theta) \right]$$

satisfies the Laplacian on the disk for any choice of constants A_0 , A_n , and B_n .

Fourier series techniques can be used to satisfy the boundary condition.

Boundary Condition

Since
$$u(a, \theta) = f(\theta)$$
 then

$$f(\theta) = A_0 + \sum_{n=1}^{\infty} a^n \left[A_n \cos(n\theta) + B_n \sin(n\theta) \right]$$

Boundary Condition

Since $u(a, \theta) = f(\theta)$ then

$$f(\theta) = A_0 + \sum_{n=1}^{\infty} a^n \left[A_n \cos(n\theta) + B_n \sin(n\theta) \right]$$

$$A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) d\theta = \frac{\alpha_0}{2}$$

$$a^n A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta = \alpha_n$$

$$a^n B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(n\theta) d\theta = \beta_n$$

Boundary Condition

Since $u(a, \theta) = f(\theta)$ then

$$f(\theta) = A_0 + \sum_{n=1}^{\infty} a^n \left[A_n \cos(n\theta) + B_n \sin(n\theta) \right]$$

$$A_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) d\theta = \frac{\alpha_0}{2}$$

$$a^n A_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta = \alpha_n$$

$$a^n B_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(n\theta) d\theta = \beta_n$$

and

$$u(r,\theta) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \left(\frac{r}{a}\right)^n \left[\alpha_n \cos(n\theta) + \beta_n \sin(n\theta)\right].$$

Example

Solve Laplace's equation on the unit disk with the following Dirichlet boundary condition.

$$\Delta u = 0$$
 for $x^2 + y^2 < 1$
$$u(1, \theta) = \pi - \theta$$
 for $-\pi < \theta < \pi$

Solution

The solution takes the form

$$u(r,\theta) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} r^n \left[\alpha_n \cos(n\theta) + \beta_n \sin(n\theta) \right]$$

where

$$\begin{aligned} &\alpha_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} (\pi - \theta) \, d\theta = 2\pi \\ &\alpha_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (\pi - \theta) \cos(n\theta) \, d\theta = 0 \\ &\beta_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (\pi - \theta) \sin(n\theta) \, d\theta = \frac{2(-1)^n}{n}. \end{aligned}$$

Solution

The solution takes the form

$$u(r,\theta) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} r^n \left[\alpha_n \cos(n\theta) + \beta_n \sin(n\theta) \right]$$

where

$$\alpha_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} (\pi - \theta) d\theta = 2\pi$$

$$\alpha_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (\pi - \theta) \cos(n\theta) d\theta = 0$$

$$\beta_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (\pi - \theta) \sin(n\theta) d\theta = \frac{2(-1)^n}{n}.$$

$$u(r, \theta) = \pi + \sum_{n=0}^{\infty} \frac{2(-1)^n r^n}{n} \sin(n\theta)$$

Illustration

$$u(r,\theta) = \pi + \sum_{n=1}^{\infty} \frac{2(-1)^n r^n}{n} \sin(n\theta)$$

Complex Arithmetic (1 of 3)

Suppose z = a + ib where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$.

$$\sum_{n=0}^{\infty} (-z)^n = \frac{1}{1+z} \quad \text{(if } |z| < 1\text{)}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n z^{n+1}}{n+1} = \ln(1+z)$$

$$-\sum_{n=1}^{\infty} \frac{(-z)^n}{n} = \ln(1+z)$$

Complex Arithmetic (2 of 3)

In polar coordinate form $z = r e^{i\theta}$ where $r = \sqrt{a^2 + b^2} = |z|$ and $\theta = \tan^{-1}(b/a)$.

$$-\sum_{n=1}^{\infty}\frac{(-z)^n}{n}=\ln(1+z)$$

Complex Arithmetic (2 of 3)

In polar coordinate form $z = r e^{i\theta}$ where $r = \sqrt{a^2 + b^2} = |z|$ and $\theta = \tan^{-1}(b/a)$.

$$-\sum_{n=1}^{\infty} \frac{(-z)^n}{n} = \ln(1+z)$$

$$-\sum_{n=1}^{\infty} \frac{1}{n} (-re^{i\theta})^n = \ln(1+re^{i\theta}) \quad (\text{if } |r| < 1)$$

$$-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} r^n e^{in\theta} = \ln(1+re^{i\theta})$$

$$-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} r^n \operatorname{Im} (e^{in\theta}) = \operatorname{Im} (\ln(1+re^{i\theta}))$$

Complex Arithmetic (2 of 3)

In polar coordinate form $z = r e^{i\theta}$ where $r = \sqrt{a^2 + b^2} = |z|$ and $\theta = \tan^{-1}(b/a)$.

$$-\sum_{n=1}^{\infty} \frac{(-z)^n}{n} = \ln(1+z)$$

$$-\sum_{n=1}^{\infty} \frac{1}{n} (-re^{i\theta})^n = \ln(1+re^{i\theta}) \quad (\text{if } |r| < 1)$$

$$-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} r^n e^{in\theta} = \ln(1+re^{i\theta})$$

$$-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} r^n \operatorname{Im} (e^{in\theta}) = \operatorname{Im} (\ln(1+re^{i\theta}))$$

$$-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} r^n \sin(n\theta) = \operatorname{Im} (\ln(1+r\cos\theta+ir\sin\theta))$$

Natural Logarithm of a Complex Number

Suppose $z=a+ib\in\mathbb{C}$ and $\textit{w}=\alpha+i\beta\in\mathbb{C}$ such that

$$e^w = z$$

then $w = \ln z$.

Natural Logarithm of a Complex Number

Suppose $z = a + ib \in \mathbb{C}$ and $w = \alpha + i\beta \in \mathbb{C}$ such that

$$e^w = z$$

then $w = \ln z$.

$$e^{\alpha+i\beta} = a+ib$$
 $e^{\alpha}e^{i\beta} = a+ib$
 $e^{\alpha}(\cos\beta+i\sin\beta) = a+ib$

Thus $a = e^{\alpha} \cos \beta$ and $b = e^{\alpha} \sin \beta$ and

$$a^2 + b^2 = e^{2\alpha} \implies \alpha = \ln \sqrt{a^2 + b^2}$$

 $\frac{b}{a} = \tan \beta \implies \beta = \tan^{-1} \frac{b}{a}.$

Thus

$$\ln z = \ln \sqrt{a^2 + b^2} + i \tan^{-1} \frac{b}{a}.$$

Complex Arithmetic (3 of 3)

$$-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} r^n \sin(n\theta) = \operatorname{Im} \left(\ln(1 + r \cos \theta + ir \sin \theta) \right)$$

$$-\sum_{n=1}^{\infty} \frac{(-1)^n}{n} r^n \sin(n\theta) = \tan^{-1} \left(\frac{r \sin \theta}{1 + r \cos \theta} \right)$$

$$u(r, \theta) = \pi - 2 \tan^{-1} \left(\frac{r \sin \theta}{1 + r \cos \theta} \right)$$

$$= \pi - 2 \tan^{-1} \left(\frac{r \sin \theta}{1 + r \cos \theta} \right)$$

Laplace's Equation on a Sector of an Annulus

Find the solution to the following boundary value problem.

$$\Delta u = 0 \text{ for } 1 < x^2 + y^2 < 4 \text{ with } x > 0 \text{ and } y > 0$$
 $u(x,0) = 0$
 $u(0,y) = 0$
 $u(x,y) = 2xy \quad \text{for } x^2 + y^2 = 1$
 $u(x,y) = \left(\frac{\pi}{2} - \tan^{-1}\frac{y}{x}\right)\tan^{-1}\frac{y}{x} \text{ for } x^2 + y^2 = 4$

Polar Coordinates

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0 \quad \text{for } 1 < r < 2 \text{ with } 0 < \theta < \pi/2$$

$$u(r,0) = 0$$

$$u(r,\pi/2) = 0$$

$$u(1,\theta) = \sin(2\theta)$$

$$u(2,\theta) = \theta\left(\frac{\pi}{2} - \theta\right)$$

We will again use separation of variables.

Separation of Variables

Assuming $u(r,\theta) = R(r)T(\theta)$ then

$$R''(r)T(\theta) + \frac{1}{r}R'(r)T(\theta) + \frac{1}{r^2}R(r)T''(\theta) = 0$$
$$\frac{r^2R''(r)}{R(r)} + \frac{rR'(r)}{R(r)} = -\frac{T''(\theta)}{T(\theta)} = c.$$

This implies the following boundary value problem for the angular factor of the solution.

$$T''(\theta) + cT(\theta) = 0$$
 $T(0) = 0$
 $T(\pi/2) = 0$

Eigenfunctions and Eigenvalues

The only nontrivial solutions to

$$T''(\theta) + cT(\theta) = 0$$
 $T(0) = 0$
 $T(\pi/2) = 0$

are

$$T_n(\theta) = \sin(2n\theta)$$

with
$$c = \lambda_n^2 = 4n^2$$
 for $n \in \mathbb{N}$.

Eigenfunctions and Eigenvalues

The only nontrivial solutions to

$$T''(\theta) + cT(\theta) = 0$$
 $T(0) = 0$
 $T(\pi/2) = 0$

are

$$T_n(\theta) = \sin(2n\theta)$$

with $c = \lambda_n^2 = 4n^2$ for $n \in \mathbb{N}$.

Using the eigenvalues in the radial factor of the product solution yields

$$r^2R''(r) + rR'(r) - 4n^2R(r) = 0$$

 $R_n(r) = A_nr^{-2n} + B_nr^{2n}$.

Product Solution

Define the product solution

$$u_n(r,\theta) = R_n(r)T_n(\theta) = (A_nr^{-2n} + B_nr^{2n})\sin(2n\theta).$$

By the Principle of Superposition a linear combination of product solutions will also solve Laplace's equation and satisfy the boundary conditions at $\theta=0$ and $\theta=\pi/2$.

$$u(r,\theta) = \sum_{n=1}^{\infty} \left(A_n r^{-2n} + B_n r^{2n} \right) \sin(2n\theta)$$

Product Solution

Define the product solution

$$u_n(r,\theta) = R_n(r)T_n(\theta) = (A_nr^{-2n} + B_nr^{2n})\sin(2n\theta).$$

By the Principle of Superposition a linear combination of product solutions will also solve Laplace's equation and satisfy the boundary conditions at $\theta=0$ and $\theta=\pi/2$.

$$u(r,\theta) = \sum_{n=1}^{\infty} \left(A_n r^{-2n} + B_n r^{2n} \right) \sin(2n\theta)$$

Now we must choose the coefficients A_n and B_n so that the boundary conditions at r=1 and r=2 are satisfied. Fourier series will be employed.

Boundary Condition at r = 1

$$u(1,\theta) = \sum_{n=1}^{\infty} (A_n + B_n) \sin(2n\theta)$$
$$\sin(2\theta) = \sum_{n=1}^{\infty} (A_n + B_n) \sin(2n\theta)$$

The last equation implies the system of equations

$$A_1 + B_1 = 1$$

 $A_n + B_n = 0$ for $n \ge 2$.

Boundary Condition at r=2

$$u(2,\theta) = \sum_{n=1}^{\infty} \left(A_n 2^{-2n} + B_n 2^{2n} \right) \sin(2n\theta)$$

$$\theta \left(\frac{\pi}{2} - \theta \right) = \sum_{n=1}^{\infty} \left(A_n 2^{-2n} + B_n 2^{2n} \right) \sin(2n\theta)$$

Multiply both sides of the last equation by $\sin(2m\theta)$ and integrate over $[0, \pi/2]$.

$$\int_0^{\pi/2} \theta\left(\frac{\pi}{2} - \theta\right) \sin(2m\theta) d\theta = \sum_{n=1}^{\infty} \left(A_n 2^{-2n} + B_n 2^{2n}\right) \int_0^{\pi/2} \sin(2n\theta) \sin(2m\theta) d\theta$$

$$\frac{1 - (-1)^m}{4m^3} = \frac{\pi/2}{2} \left(A_m 2^{-2m} + B_m 2^{2m}\right)$$

$$\frac{1 - (-1)^m}{\pi m^3} = A_m 2^{-2m} + B_m 2^{2m}$$

Systems of Equations (1 of 3)

$$A_1 + B_1 = 1$$
$$\frac{1}{4}A_1 + 4B_1 = \frac{2}{\pi}$$

which implies
$$A_1 = \frac{16\pi - 8}{15\pi}$$
 and $B_1 = \frac{8 - \pi}{15\pi}$.

Systems of Equations (2 of 3)

For n = (2k + 1) (i.e., n odd and greater than 1)

$$A_{2k+1} + B_{2k+1} = 0$$

$$2^{-4k-2}A_{2k+1} + 2^{4k+2}B_{2k+1} = \frac{2}{\pi(2k+1)^3}$$

which implies

$$A_{2k+1} = \frac{2^{4k+3}}{\pi(2k+1)^3(2^{4(2k+1)}-1)}$$

$$B_{2k+1} = -\frac{2^{4k+3}}{\pi(2k+1)^3(2^{4(2k+1)}-1)}.$$

Systems of Equations (3 of 3)

For
$$n = 2k$$
 (n even)
$$A_{2k} + B_{2k} = 0$$

$$2^{-4k}A_{2k} + 2^{4k}B_{2k} = 0$$

which implies $A_{2k} = B_{2k} = 0$.

Systems of Equations (3 of 3)

For n = 2k (n even)

$$A_{2k} + B_{2k} = 0$$
$$2^{-4k}A_{2k} + 2^{4k}B_{2k} = 0$$

which implies $A_{2k} = B_{2k} = 0$.

$$u(r,\theta) = \left(\frac{(16\pi - 8)r^{-2}}{15\pi} + \frac{(8-\pi)r^2}{15\pi}\right)\sin(2\theta)$$
$$+ \sum_{n=1}^{\infty} \frac{2^{4k+3}(r^{-4k-2} - r^{4k+2})}{\pi(2k+1)^3(2^{4(2k+1)} - 1)}\sin((4n+2)\theta)$$

Illustration

Homework

- ► Read Section 6.3–6.4
- ► Exercises: 10–15