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Objectives

In this lesson we will learn:
» to solve Laplace’s equation on two-dimensional domains with
Neumann boundary conditions,
» to compare the solutions on domains with Dirichlet boundary
conditions to solution on domains with Neumann boundary
conditions.



Boundary Value Problem

Consider Laplace’s equation on the rectangle
Q={(x,¥)|0< x < a, 0 <y < b} with Neumann boundary
conditions:

Au=0for(x,y)eQ
uy(x,0) =uy(x,b)=0for0 < x < a
ux(0,y)=0for0<y<b
ux(a,y)=f(y)forO <y < b.

Physical Interpretation: the steady-state heat distribution in Q when
the rectangular region is insulated along its bottom, top, and left
edges and there is a flow of heat on the right edge.



Product Solutions

Assume u(x,y) = X(x)Y(y) solves Laplace’s equation. Separation
of variables induces the following ODEs for X(x) and Y(y).

X"(x) — oX(x) = 0 with X'(0) = 0
Y"(y) + o Y(y) = 0 with Y/(0) = 0 = Y’(b),

where ¢ is a constant.

Taking the second BVP, the only nontrivial solutions are:

Ya(y) = cos it 4
b
P
On = b2

forn=0,1,2,....

This implies Xn(x) = cosh nibx forn=0,1,2,....



Series Solution

The product solutions:

un(x,y) —cosh%cosTy forn=0,1,2,...
solve Laplace’s equation and satisfy the three homogeneous
boundary conditions.

By the Principle of Superposition,

u(x,y) =bo + Z b, cosh anX cos %
n=1

The coefficients b, can be determined from the remaining
nonhomogeneous boundary condition.



Determining the Coefficients

Differentiate the formal series solution and let x = a.
O nmw nra ___nmy
y)_;bn<b) sinh 772 cos T = f(y)

Remarks:
» The coefficient by was lost during the differentiation.

» The infinite series can be regarded as a cosine series for f(y) if
the integral of f over [0, b] vanishes, i.e., if

b
/ f(y) dy = 0.
0



Further Remarks

b
> If / f(y) dy # 0 then a solution to the BVP does not exist.
0

» Consider the physics:

» If the definite integral vanishes then there is no net flux of heat
across the boundary at x = a and hence a steady-state (time
independent) heat distribution can evolve.

> |f the definite integral does not vanish, then there is a net flux of
heat in or out of Q and no time independent temperature
distribution can exist.

» Even if the definite integral vanishes, the solution can be
determined only up to the addition of an arbitrary constant. Thus
Laplace’s equation on a rectangle with Neumann boundary
conditions on all four edges has no unique solution.

» This type of boundary value problem is ill-posed.



b
Assuming/ f(y)dy =0
0

= nm/f cos—dy7

for n e N.

u(x,y)=bo + Z bn cosh anX cos niby
n=1

where by is an arbitrary constant.



Example

Find a solution to the Neumann boundary value problem on the unit
square:

Au=0forO<x<tlandO<y <1
uy(x,0) = uy(x,1) =0for0 < x < 1
ux(0,y)=0for0 <y <1
ux(1,y)=y—1/2for0 <y < 1.



Solution (1 of 2)

. vy
Check: / <y — ) dy = { - ] =0.
0 2 2 2],

Using the Euler-Fourier coefficient formula:

2 ! 1
b, = m/o (y — 2> cos(nmy) dy
) o
= Wﬂh(nﬁ)/o sin(nmy) dy
2((=1)"-1)

~ mr3sinh(nr)’

B 4 X cosh((2n — 1)mx) cos((2n — 1)my)
utxy)=bo =75 ; (2n— 1)2sinh((2n — 1))

where by is an arbitrary constant.



Solution (2 of 2)
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General Case

Consider Laplace’s equation on a rectangle with Neumann BCs on all
four edges.

Uxx + Uy, =0for (x,y) e R
ux(0,y)=gi(y)for0O<y <b
ux(a,y)=go(y)forO<y <b
uy(x,0)=f(x)for0 < x < a
uy(x,b) =hb(x)for0 < x < a

This BVP can be decomposed into four sub-problems with
homogeneous boundary conditions on three edges.



Sub-Problems

Au;p = Ofor(x,y)eR Au, = O0for(x,y)eR
(u)x(0,y) = qi(y)forye(0,b)  (u2)x(0,y) = O0forye(0,b)
(u1)x(a,y) = 0Ofory e (0,b) (w)x(ay) = ge(y)fory € (0,b)
(u1)y(x,0) = O0forx e (0,a) (u2)y(x,0) = O0forxe(0,a)
(u1)y(x,b) = O0forx e (0,a) (u2)y(x,b) = O0forx e (0,a)

Aus = Ofor(x,y)€eR Auy = Ofor(x,y)€eR
(us)x(0,y) = Oforye(0,b) (us)x(0,y) = Ofory€(0,b)
(us)x(a,y) = Oforye(0,b) (us)x(a,y) = Oforye(0,b)
(us)y(x,0) = fi(y)forx € (0,a) (us)y(x,0) = O0forx e (0,a)
(us)y(x,b) = O0Oforxe(0,a) (us)y(x,b) = fh(y)forx e (0,a)



Solutions to the Sub-Problems

ui(x,y) =ap + ,,Z:; an cosh mr(ab— X) cos m;y
> nmx nmy
UQ(X, y) = b() + Z bn cosh T COos T

n=1

= n nm(b —
us(x,y) =co + Z Cncos ZX cosh W(ba Y)

n=1

ug(x,y) = do-i-ZdncosTXco hmTTy

n=1



Series Coefficients

Provided [, g1(y)dy = J5 ga(y) dy = 0 and
fO f1 dX— fO f2 dX =0, then

—2 o nmy
an= m/ 91(y)cosTdy

bn = nﬂ'smh ”ﬂa / gz(y cosidy
o= nmsinh ””b / fi(x cosi ax

dn = mrsmh””b/ f(x cos—dx

The solution to the original BVP is then

u(x, y) = (X, y) + ta(x, ¥) + Us(X, ¥) + Ua(X, ¥).



Neumann Problems on Disks

Consider Laplace’s equation on the disk of radius a > 0:

Au=0forx? +y? < &
ou 2,2 _ A2
an X Y) = olx,y) for X+ y* = &
odu/on denotes the derivative in the direction of the unit outward
normal vector to the boundary.



Neumann Problems on Disks

Consider Laplace’s equation on the disk of radius a > 0:

Au=0forx? +y? < &
ou

%(va) = ¢(x,y) for X2 —|—y2 = &.

odu/on denotes the derivative in the direction of the unit outward
normal vector to the boundary.

Convert to polar coordinates.

1 1
v,,+7v,+r—2v99=0for0<r<aand—oo<0<oo

%(a,&) = ¢(acosf, asinf) = f(0) for —oo < 6 < 0.



Series Solution

The formal series solution can be written as
v(r,0) =do + i r"[cn cos(nb) + dysin(nb)],
n=1
with coefficients dy, ¢,, and d, chosen such that
v/(a,0) = i na"~'[c, cos(nf) + d,sin(nd)] = ().
n=1

A necessary condition for the solution to exist is

/ f(0)do = ¢(acosb, asinf) do = 0.

—T



Series Coefficients

1—n
a
Ch = /f ) cos(nf) d
—T

dy — 31 ’ / £(6) sin(n9) do.

nm

Remark: Coefficient dy can be chosen arbitrarily and thus the
solution to Laplace’s equation on a disk with Neumann boundary

conditions is not unique.



Example

Find a bounded solution to Laplace’s equation on
Q= {(r,0)]|0 < r < 1} that satisfies the Neumann boundary
condition,

ur(1,0) = f(0) = 0,



Solution (1 of )

The solution can be written as
u(r,0) = do + Y _ r"[cncos(nb) + dysin(nb)].
n=1

The boundary condition implies

ur(1,0) = i nc,cos(nf) + ndysin(nd)] = 6.

n=1

Applying the Euler-Fourier formula:
ne,= 1/ 6 cos(nf)dod =0
™ —T

ndnzl/ 6 sin(nd) do
L
—0 b=m gy
= | — cos(nh) +f/ cos(nb) db
nm o——mn T J_1
—2(=1)"

dn - n2



Solution (2 of )

u(r,0) =dy — Zi ( )2 sin(nek).
n=1

DA



Homework

» Read Sections 6.5 and 6.6
» Exercises: 2023



