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Objectives

In this lesson we will learn:
▶ to solve Laplace’s equation on two-dimensional domains with

Neumann boundary conditions,
▶ to compare the solutions on domains with Dirichlet boundary

conditions to solution on domains with Neumann boundary
conditions.



Boundary Value Problem

Consider Laplace’s equation on the rectangle
Ω = {(x , y) |0 < x < a, 0 < y < b} with Neumann boundary
conditions:

△u = 0 for (x , y) ∈ Ω

uy (x ,0) = uy (x ,b) = 0 for 0 < x < a
ux(0, y) = 0 for 0 < y < b
ux(a, y) = f (y) for 0 < y < b.

Physical Interpretation: the steady-state heat distribution in Ω when
the rectangular region is insulated along its bottom, top, and left
edges and there is a flow of heat on the right edge.



Product Solutions

Assume u(x , y) = X (x)Y (y) solves Laplace’s equation. Separation
of variables induces the following ODEs for X (x) and Y (y).

X ′′(x)− σX (x) = 0 with X ′(0) = 0
Y ′′(y) + σY (y) = 0 with Y ′(0) = 0 = Y ′(b),

where σ is a constant.

Taking the second BVP, the only nontrivial solutions are:

Yn(y) = cos
nπy

b

σn =
n2π2

b2

for n = 0,1,2, . . ..

This implies Xn(x) = cosh
nπx

b
for n = 0,1,2, . . ..



Series Solution

The product solutions:

un(x , y) = cosh
nπx

b
cos

nπy
b

for n = 0,1,2, . . .

solve Laplace’s equation and satisfy the three homogeneous
boundary conditions.

By the Principle of Superposition,

u(x , y) = b0 +
∞∑

n=1

bn cosh
nπx

b
cos

nπy
b

.

The coefficients bn can be determined from the remaining
nonhomogeneous boundary condition.



Determining the Coefficients

Differentiate the formal series solution and let x = a.

ux(a, y) =
∞∑

n=1

bn

(nπ
b

)
sinh

nπa
b

cos
nπy

b
= f (y)

Remarks:
▶ The coefficient b0 was lost during the differentiation.
▶ The infinite series can be regarded as a cosine series for f (y) if

the integral of f over [0,b] vanishes, i.e., if∫ b

0
f (y)dy = 0.



Further Remarks

▶ If
∫ b

0
f (y)dy ̸= 0 then a solution to the BVP does not exist.

▶ Consider the physics:
▶ If the definite integral vanishes then there is no net flux of heat

across the boundary at x = a and hence a steady-state (time
independent) heat distribution can evolve.

▶ If the definite integral does not vanish, then there is a net flux of
heat in or out of Ω and no time independent temperature
distribution can exist.

▶ Even if the definite integral vanishes, the solution can be
determined only up to the addition of an arbitrary constant. Thus
Laplace’s equation on a rectangle with Neumann boundary
conditions on all four edges has no unique solution.

▶ This type of boundary value problem is ill-posed.



Assuming
∫ b

0
f (y)dy = 0

bn =
2

nπ sinh nπa
b

∫ b

0
f (y) cos

nπy
b

dy ,

for n ∈ N.

u(x , y) = b0 +
∞∑

n=1

bn cosh
nπx

b
cos

nπy
b

where b0 is an arbitrary constant.



Example

Find a solution to the Neumann boundary value problem on the unit
square:

△u = 0 for 0 < x < 1 and 0 < y < 1
uy (x ,0) = uy (x ,1) = 0 for 0 < x < 1
ux(0, y) = 0 for 0 < y < 1
ux(1, y) = y − 1/2 for 0 < y < 1.



Solution (1 of 2)

Check:
∫ 1

0

(
y − 1

2

)
dy =

[
y2

2
− y

2

]y=1

y=0
= 0.

Using the Euler-Fourier coefficient formula:

bn =
2

nπ sinh(nπ)

∫ 1

0

(
y − 1

2

)
cos(nπy)dy

=
−2

n2π2 sinh(nπ)

∫ 1

0
sin(nπy)dy

=
2((−1)n − 1)
n3π3 sinh(nπ)

.

u(x , y) = b0 −
4
π3

∞∑
n=1

cosh((2n − 1)πx) cos((2n − 1)πy)
(2n − 1)3 sinh((2n − 1)π)

where b0 is an arbitrary constant.



Solution (2 of 2)
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General Case

Consider Laplace’s equation on a rectangle with Neumann BCs on all
four edges.

uxx + uyy = 0 for (x , y) ∈ R
ux(0, y) = g1(y) for 0 < y < b
ux(a, y) = g2(y) for 0 < y < b
uy (x ,0) = f1(x) for 0 < x < a
uy (x ,b) = f2(x) for 0 < x < a

This BVP can be decomposed into four sub-problems with
homogeneous boundary conditions on three edges.



Sub-Problems

△u1 = 0 for (x , y) ∈ R
(u1)x(0, y) = g1(y) for y ∈ (0, b)
(u1)x(a, y) = 0 for y ∈ (0, b)
(u1)y (x , 0) = 0 for x ∈ (0, a)
(u1)y (x , b) = 0 for x ∈ (0, a)

△u2 = 0 for (x , y) ∈ R
(u2)x(0, y) = 0 for y ∈ (0, b)
(u2)x(a, y) = g2(y) for y ∈ (0, b)
(u2)y (x , 0) = 0 for x ∈ (0, a)
(u2)y (x , b) = 0 for x ∈ (0, a)

△u3 = 0 for (x , y) ∈ R
(u3)x(0, y) = 0 for y ∈ (0, b)
(u3)x(a, y) = 0 for y ∈ (0, b)
(u3)y (x , 0) = f1(y) for x ∈ (0, a)
(u3)y (x , b) = 0 for x ∈ (0, a)

△u4 = 0 for (x , y) ∈ R
(u4)x(0, y) = 0 for y ∈ (0, b)
(u4)x(a, y) = 0 for y ∈ (0, b)
(u4)y (x , 0) = 0 for x ∈ (0, a)
(u4)y (x , b) = f2(y) for x ∈ (0, a)



Solutions to the Sub-Problems

u1(x , y) = a0 +
∞∑

n=1

an cosh
nπ(a − x)

b
cos

nπy
b

u2(x , y) = b0 +
∞∑

n=1

bn cosh
nπx

b
cos

nπy
b

u3(x , y) = c0 +
∞∑

n=1

cn cos
nπx

a
cosh

nπ(b − y)
a

u4(x , y) = d0 +
∞∑

n=1

dn cos
nπx

a
cosh

nπy
a



Series Coefficients

Provided
∫ b

0 g1(y)dy =
∫ b

0 g2(y)dy = 0 and∫ a
0 f1(x)dx =

∫ a
0 f2(x)dx = 0, then

an =
−2

nπ sinh nπa
b

∫ b

0
g1(y) cos

nπy
b

dy

bn =
2

nπ sinh nπa
b

∫ b

0
g2(y) cos

nπy
b

dy

cn =
−2

nπ sinh nπb
a

∫ a

0
f1(x) cos

nπx
a

dx

dn =
2

nπ sinh nπb
a

∫ a

0
f2(x) cos

nπx
a

dx .

The solution to the original BVP is then

u(x , y) = u1(x , y) + u2(x , y) + u3(x , y) + u4(x , y).



Neumann Problems on Disks

Consider Laplace’s equation on the disk of radius a > 0:

△u = 0 for x2 + y2 < a2

∂u
∂n

(x , y) = ϕ(x , y) for x2 + y2 = a2.

∂u/∂n denotes the derivative in the direction of the unit outward
normal vector to the boundary.

Convert to polar coordinates.

vrr +
1
r

vr +
1
r2 vθθ = 0 for 0 < r < a and −∞ < θ < ∞

∂v
∂r

(a, θ) = ϕ(a cos θ,a sin θ) = f (θ) for −∞ < θ < ∞.



Neumann Problems on Disks

Consider Laplace’s equation on the disk of radius a > 0:

△u = 0 for x2 + y2 < a2

∂u
∂n

(x , y) = ϕ(x , y) for x2 + y2 = a2.

∂u/∂n denotes the derivative in the direction of the unit outward
normal vector to the boundary.

Convert to polar coordinates.

vrr +
1
r

vr +
1
r2 vθθ = 0 for 0 < r < a and −∞ < θ < ∞

∂v
∂r

(a, θ) = ϕ(a cos θ,a sin θ) = f (θ) for −∞ < θ < ∞.



Series Solution

The formal series solution can be written as

v(r , θ) = d0 +
∞∑

n=1

rn[cn cos(nθ) + dn sin(nθ)],

with coefficients d0, cn, and dn chosen such that

vr (a, θ) =
∞∑

n=1

nan−1[cn cos(nθ) + dn sin(nθ)] = f (θ).

A necessary condition for the solution to exist is∫ π

−π

f (θ)dθ =

∫ π

−π

ϕ(a cos θ,a sin θ)dθ = 0.



Series Coefficients

cn =
a1−n

nπ

∫ π

−π

f (θ) cos(nθ)dθ

dn =
a1−n

nπ

∫ π

−π

f (θ) sin(nθ)dθ.

Remark: Coefficient d0 can be chosen arbitrarily and thus the
solution to Laplace’s equation on a disk with Neumann boundary
conditions is not unique.



Example

Find a bounded solution to Laplace’s equation on
Ω = {(r , θ) |0 ≤ r < 1} that satisfies the Neumann boundary
condition,

ur (1, θ) = f (θ) = θ,



Solution (1 of )
The solution can be written as

u(r , θ) = d0 +
∞∑

n=1

rn[cn cos(nθ) + dn sin(nθ)].

The boundary condition implies

ur (1, θ) =
∞∑

n=1

n cn cos(nθ) + n dn sin(nθ)] = θ.

Applying the Euler-Fourier formula:

n cn =
1
π

∫ π

−π

θ cos(nθ)dθ = 0

n dn =
1
π

∫ π

−π

θ sin(nθ)dθ

=

[
−θ

nπ
cos(nθ)

]θ=π

θ=−π

+
1

nπ

∫ π

−π

cos(nθ)dθ

dn =
−2(−1)n

n2 .



Solution (2 of )

u(r , θ) = d0 − 2
∞∑

n=1

(−1)nrn

n2 sin(nθ).
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Homework

▶ Read Sections 6.5 and 6.6
▶ Exercises: 20–23


