The Nonhomogeneous Wave Equation MATH 467 *Partial Differential Equations*

J Robert Buchanan

Department of Mathematics

Fall 2022

Objectives

In this lesson we will learn:

▶ a decomposition approach to solving nonhomogeneous wave equations.

General Nonhomogeneous Wave Equation

Consider the following initial boundary value problem:

$$
u_{tt} = c^2 u_{xx} + F(x, t) \text{ for } 0 < x < L \text{ and } t > 0
$$
\n
$$
u(0, t) = \phi(t) \text{ and } u(L, t) = \psi(t) \text{ for } t > 0
$$
\n
$$
u(x, 0) = f(x) \text{ and } u_t(x, 0) = g(x) \text{ for } 0 < x < L.
$$

The solution to the IBVP can be found by solving two simpler initial boundary value problems and using the Principle of Superposition to reconstruct the full solution.

KOD KOD KED KED E VAN

Two Sub-Problems

$$
v_{tt} = c^2 v_{xx} + F(x, t) \text{ for } 0 < x < L \text{ and } t > 0
$$

$$
v(0, t) = v(L, t) = 0 \text{ for } t > 0
$$

$$
v(x, 0) = v_t(x, 0) = 0 \text{ for } 0 < x < L
$$

The IBVP above contains the nonhomogeneous PDE.

$$
w_{tt} = c^2 w_{xx} \text{ for } 0 < x < L \text{ and } t > 0
$$
\n
$$
w(0, t) = \phi(t) \text{ and } w(L, t) = \psi(t) \text{ for } t > 0
$$
\n
$$
w(x, 0) = f(x) \text{ and } w_t(x, 0) = g(x) \text{ for } 0 < x < L.
$$

The IBVP above contains the nonhomogeneous BCs.

If $v(x, t)$ and $w(x, t)$ solve their respective IBVPs, then $u(x, t) = v(x, t) + w(x, t)$ solves the original IBVP.

Homogeneous PDE with Nonhomogeneous BCs

Consider the IBVP with nonhomogeneous BCs:

$$
w_{tt} = c^2 w_{xx} \text{ for } 0 < x < L \text{ and } t > 0
$$
\n
$$
w(0, t) = \phi(t) \text{ for } t > 0
$$
\n
$$
w(L, t) = \psi(t) \text{ for } t > 0
$$
\n
$$
w(x, 0) = f(x) \text{ for } 0 < x < L
$$
\n
$$
w_t(x, 0) = g(x) \text{ for } 0 < x < L
$$

Assume the solution can be written as $w(x, t) = y(x, t) + r(x, t)$ where $r(x, t)$ is a **reference function** satisfying the nonhomogeneous BCs and $y(x, t)$ is an unknown function, to be found later.

Reference Function

Find any function $r(x, t)$ which satisfies the nonhomogeneous BCs:

w(0, *t*) = ϕ (*t*) for *t* > 0 $w(L, t) = \psi(t)$ for $t > 0$.

Reference Function

Find any function $r(x, t)$ which satisfies the nonhomogeneous BCs:

$$
w(0, t) = \phi(t) \text{ for } t > 0
$$

$$
w(L, t) = \psi(t) \text{ for } t > 0.
$$

Many solutions are possible, but a straightforward one is

$$
r(x,t)=\frac{x}{L}[\psi(t)-\phi(t)]+\phi(t).
$$

KO KKO K S A B K S B K V S A V K S

Reference Function

Find any function $r(x, t)$ which satisfies the nonhomogeneous BCs:

$$
w(0, t) = \phi(t) \text{ for } t > 0
$$

$$
w(L, t) = \psi(t) \text{ for } t > 0.
$$

Many solutions are possible, but a straightforward one is

$$
r(x,t)=\frac{x}{L}[\psi(t)-\phi(t)]+\phi(t).
$$

KORKARA KERKER DAGA

If $w(x, t) = y(x, t) + r(x, t)$ solves the IBVP given earlier with nonhomogeneous BCs, find the IBVP which *y*(*x*, *t*) solves.

Related IBVP with Homogeneous BCs

$$
w_{tt} = y_{tt} + \frac{x}{L} \left[\psi''(t) - \phi''(t) \right] + \phi''(t)
$$

$$
w_{xx} = y_{xx}
$$

K ロ X x (日 X X B X X B X X B X X O Q O

Related IBVP with Homogeneous BCs

$$
w_{tt} = y_{tt} + \frac{x}{L} [\psi''(t) - \phi''(t)] + \phi''(t)
$$

\n
$$
w_{xx} = y_{xx}
$$

\n
$$
y_{tt} = c^2 y_{xx} - \frac{x}{L} [\psi''(t) - \phi''(t)] - \phi''(t) \text{ for } 0 < x < L, t > 0
$$

\n
$$
y(0, t) = y(L, t) = 0 \text{ for } t > 0
$$

\n
$$
y(x, 0) = f(x) - \frac{x}{L} [\psi(0) - \phi(0)] - \phi(0) \text{ for } 0 < x < L
$$

\n
$$
y_t(x, 0) = g(x) - \frac{x}{L} [\psi'(0) - \phi'(0)] - \phi'(0) \text{ for } 0 < x < L.
$$

KOKK@KKEKKEK E 1990

Related IBVP with Homogeneous BCs

$$
w_{tt} = y_{tt} + \frac{x}{L} [\psi''(t) - \phi''(t)] + \phi''(t)
$$

\n
$$
w_{xx} = y_{xx}
$$

\n
$$
y_{tt} = c^2 y_{xx} - \frac{x}{L} [\psi''(t) - \phi''(t)] - \phi''(t) \text{ for } 0 < x < L, t > 0
$$

\n
$$
y(0, t) = y(L, t) = 0 \text{ for } t > 0
$$

\n
$$
y(x, 0) = f(x) - \frac{x}{L} [\psi(0) - \phi(0)] - \phi(0) \text{ for } 0 < x < L
$$

\n
$$
y_t(x, 0) = g(x) - \frac{x}{L} [\psi'(0) - \phi'(0)] - \phi'(0) \text{ for } 0 < x < L.
$$

Remark: the IBVP for $y(x, t)$ has homogeneous Dirichlet boundary conditions, but a nonhomogeneous PDE. We must decompose it into two additional sub-problems in order to solve it.

Two More Sub-Problems

Note: the dependent variables are again named *v* and *w* though they are not the same functions as mentioned earlier.

IBVP with homogeneous PDE:

$$
w_{tt} = c^2 w_{xx} \text{ for } 0 < x < L, t > 0
$$

w(0, t) = w(L, t) = 0 for t > 0

$$
w(x, 0) = f(x) - \frac{x}{L} [\psi(0) - \phi(0)] - \phi(0) \text{ for } 0 < x < L
$$

$$
w_t(x, 0) = g(x) - \frac{x}{L} [\psi'(0) - \phi'(0)] - \phi'(0) \text{ for } 0 < x < L.
$$

IBVP with nonhomogeneous PDE:

$$
v_{tt} = c^2 v_{xx} - \frac{x}{L} [\psi''(t) - \phi''(t)] - \phi''(t) \text{ for } 0 < x < L, t > 0
$$

$$
v(0, t) = v(L, t) = 0 \text{ for } t > 0
$$

$$
v(x, 0) = 0 \text{ for } 0 < x < L
$$

$$
v_t(x, 0) = 0 \text{ for } 0 < x < L.
$$

KORK ERKER ADAM ADA

IBVP With Homogeneous PDE

$$
w_{tt} = c^2 w_{xx} \text{ for } 0 < x < L, t > 0
$$

\n
$$
w(0, t) = w(L, t) = 0 \text{ for } t > 0
$$

\n
$$
w(x, 0) = f(x) - \frac{x}{L} [\psi(0) - \phi(0)] - \phi(0) \text{ for } 0 < x < L
$$

\n
$$
w_t(x, 0) = g(x) - \frac{x}{L} [\psi'(0) - \phi'(0)] - \phi'(0) \text{ for } 0 < x < L.
$$

Remark: this IBVP has homogeneous Dirichlet BCs and thus we can express the solution as a Fourier series:

$$
w(x, t) = \sum_{n=1}^{\infty} \left(a_n \cos \frac{cn\pi t}{L} + b_n \sin \frac{cn\pi t}{L} \right) \sin \frac{n\pi x}{L}.
$$

IBVP with nonhomogeneous PDE

$$
v_{tt} = c^2 v_{xx} - \frac{x}{L} [\psi''(t) - \phi''(t)] - \phi''(t) \text{ for } 0 < x < L, t > 0
$$

$$
v(0, t) = v(L, t) = 0 \text{ for } t > 0
$$

$$
v(x, 0) = 0 \text{ for } 0 < x < L
$$

$$
v_t(x, 0) = 0 \text{ for } 0 < x < L.
$$

Remark: this IBVP has homogeneous Dirichlet BCs and ICs of zero. We will solve this nonhomogeneous PDE in more generality by assuming the nonhomogeneity is a function $F(x, t)$.

KORK ERKER ADAM ADA

Finding the Solution to the Nonhomogeneous PDE

$$
u_{tt} = c^2 u_{xx} + F(x, t) \text{ for } 0 < x < L, t > 0
$$

$$
u(0, t) = u(L, t) = 0 \text{ for } t > 0
$$

$$
u(x, 0) = 0 \text{ for } 0 < x < L
$$

$$
u_t(x, 0) = 0 \text{ for } 0 < x < L.
$$

Assume the solution has the form

$$
u(x, t) = \sum_{n=1}^{\infty} T_n(t) \sin \frac{n\pi x}{L}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Differentiate and substitute into the PDE.

Differentiating the Solution

$$
u_{tt} = c^2 u_{xx} + F(x, t)
$$

$$
\sum_{n=1}^{\infty} T_n''(t) \sin \frac{n\pi x}{L} = -c^2 \sum_{n=1}^{\infty} \left(\frac{n\pi}{L}\right)^2 T_n(t) \sin \frac{n\pi x}{L} + F(x, t)
$$

Rearrange terms to isolate the nonhomogeneous term.

$$
\sum_{n=1}^{\infty} \left[T_n''(t) + \left(\frac{n \pi c}{L} \right)^2 T_n(t) \right] \sin \frac{n \pi x}{L} = F(x, t)
$$

Multiply both sides by $\sin(m\pi x)/L$ and integrate from $x = 0$ to $x = L$.

KO KKO K S A B K S B K V S A V K S

Orthogonality

Since $\sin(n\pi x)/L$ and $\sin(m\pi x)/L$ are orthogonal when $n \neq m$ then

$$
T''_m(t) + \left(\frac{m\pi c}{L}\right)^2 T_m(t) = \frac{2}{L} \int_0^L F(x, t) \sin \frac{m\pi x}{L} dx = F_m(t)
$$

KID KARA KE KAEK LE YOKO

for $m \in \mathbb{N}$.

Orthogonality

Since $\sin(n\pi x)/L$ and $\sin(m\pi x)/L$ are orthogonal when $n \neq m$ then

$$
T''_m(t) + \left(\frac{m\pi c}{L}\right)^2 T_m(t) = \frac{2}{L} \int_0^L F(x, t) \sin \frac{m\pi x}{L} dx = F_m(t)
$$

for $m \in \mathbb{N}$.

For $n = 1, 2, \ldots$ we must solve the initial value problems:

$$
T''_n(t) + \left(\frac{n\pi c}{L}\right)^2 T_n(t) = F_n(t)
$$

$$
T_n(0) = 0
$$

$$
T'_n(0) = 0.
$$

KO KKO K S A B K S B K V S A V K S

Example

Find the solution to the following IBVP:

$$
u_{tt} = u_{xx} + t \sin x \text{ for } 0 < x < \pi \text{ and } t > 0
$$

$$
u(0, t) = u(\pi, t) = 0 \text{ for } t > 0
$$

$$
u(x, 0) = \sin x \text{ for } 0 < x < \pi
$$

$$
u_t(x, 0) = \sin(3x) \text{ for } 0 < x < \pi.
$$

K ロ X x (日 X X B X X B X X B X X O Q O

Solution (1 of 7)

Find the solution to the homogeneous IBVP:

$$
w_{tt} = w_{xx} \text{ for } 0 < x < \pi \text{ and } t > 0
$$
\n
$$
w(0, t) = w(\pi, t) = 0 \text{ for } t > 0
$$
\n
$$
w(x, 0) = \sin x \text{ for } 0 < x < \pi
$$
\n
$$
w_t(x, 0) = \sin(3x) \text{ for } 0 < x < \pi.
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

This can be found readily in d'Alembertian form.

Solution (2 of 7)

$$
w(x, t) = \frac{1}{2} (\sin(x - t) + \sin(x + t)) + \frac{1}{2} \int_{x - t}^{x + t} \sin(3s) ds
$$

= $\frac{1}{2} (\sin(x - t) + \sin(x + t)) + \frac{1}{6} (\cos 3(x - t) - \cos 3(x + t))$
= $\sin x \cos t + \frac{1}{3} \sin(3x) \sin(3t)$

Kロトメ部トメミトメミト (ミ) のQC

Solution (3 of 7)

Now find the solution to the IBVP containg the nonhomogeneous PDE and zero initial conditions.

$$
v_{tt} = v_{xx} + t \sin x \text{ for } 0 < x < \pi \text{ and } t > 0
$$

$$
v(0, t) = v(\pi, t) = 0 \text{ for } t > 0
$$

$$
v(x, 0) = 0 \text{ for } 0 < x < \pi
$$

$$
v_t(x, 0) = 0 \text{ for } 0 < x < \pi.
$$

Make the assumption that the solution can be expressed as

$$
v(x,t)=\sum_{n=1}^{\infty}T_n(t)\sin(n x).
$$

Solution (4 of 7)

Differentiating $v(x, t)$ and substituting into the PDE produce:

$$
\sum_{n=1}^{\infty} T_n''(t) \sin(n x) = -\sum_{n=1}^{\infty} n^2 T_n(t) \sin(n x) + t \sin x
$$

$$
\sum_{n=1}^{\infty} (T_n(t) + n^2 T_n(t)) \sin(n x) = t \sin x.
$$

K □ K K @ K K 할 K K 할 K (할 K) 할 *K* () Q Q Q

Solution (4 of 7)

Differentiating $v(x, t)$ and substituting into the PDE produce:

$$
\sum_{n=1}^{\infty} T_n''(t) \sin(n x) = -\sum_{n=1}^{\infty} n^2 T_n(t) \sin(n x) + t \sin x
$$

$$
\sum_{n=1}^{\infty} (T_n(t) + n^2 T_n(t)) \sin(n x) = t \sin x.
$$

KO KKO K S A B K S B K V S A V K S

Multiply both sides by $sin(mx)$ and integrate over $[0, \pi]$.

Solution (5 of 7)

$$
T''_m(t) + m^2 T_m(t) = \frac{2}{\pi} \int_0^{\pi} t \sin x \sin(mx) dx
$$

= $\begin{cases} t & \text{if } m = 1 \\ 0 & \text{if } m = 2, 3, ... \end{cases}$

Kロトメ部トメミトメミト (ミ) のQC

Solution (5 of 7)

$$
T''_m(t) + m^2 T_m(t) = \frac{2}{\pi} \int_0^{\pi} t \sin x \sin(mx) dx
$$

= $\begin{cases} t & \text{if } m = 1 \\ 0 & \text{if } m = 2, 3, ... \end{cases}$

Solve the initial value problems:

$$
T_1''(t) + T_1(t) = t
$$

$$
T_n''(t) + n^2 T_n(t) = 0
$$

KOXK@XKEXKEX E 1990

for $n = 2, 3, \ldots$ with zero initial conditions.

Solution (6 of 7)

We can immediately check that $T_n(t) = 0$ for $n = 2, 3, \ldots$.

$$
T_1(t) = A_1 \cos t + B_1 \sin t + t
$$

Making use of the initial conditions $(T_1(0) = T'_1(0) = 0)$ reveals,

$$
T_1(t)=t-\sin t.
$$

This implies,

$$
v(x,t)=T_1(t)\sin x=(t-\sin t)\sin x.
$$

Solution (7 of 7)

Homework

- ▶ Read Sections 5.4
- ▶ Exercises: 18–20

Kロトメ部トメミトメミト (ミ) のQC