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Objectives

In this lesson we will learn:
▶ a decomposition approach to solving nonhomogeneous wave

equations.



General Nonhomogeneous Wave Equation

Consider the following initial boundary value problem:

utt = c2uxx + F (x , t) for 0 < x < L and t > 0
u(0, t) = ϕ(t) and u(L, t) = ψ(t) for t > 0
u(x ,0) = f (x) and ut(x ,0) = g(x) for 0 < x < L.

The solution to the IBVP can be found by solving two simpler initial
boundary value problems and using the Principle of Superposition to
reconstruct the full solution.



Two Sub-Problems

vtt = c2vxx + F (x , t) for 0 < x < L and t > 0
v(0, t) = v(L, t) = 0 for t > 0
v(x ,0) = vt(x ,0) = 0 for 0 < x < L

The IBVP above contains the nonhomogeneous PDE.

wtt = c2wxx for 0 < x < L and t > 0
w(0, t) = ϕ(t) and w(L, t) = ψ(t) for t > 0
w(x ,0) = f (x) and wt(x ,0) = g(x) for 0 < x < L.

The IBVP above contains the nonhomogeneous BCs.

If v(x , t) and w(x , t) solve their respective IBVPs, then
u(x , t) = v(x , t) + w(x , t) solves the original IBVP.



Homogeneous PDE with Nonhomogeneous BCs

Consider the IBVP with nonhomogeneous BCs:

wtt = c2wxx for 0 < x < L and t > 0
w(0, t) = ϕ(t) for t > 0
w(L, t) = ψ(t) for t > 0
w(x ,0) = f (x) for 0 < x < L
wt(x ,0) = g(x) for 0 < x < L.

Assume the solution can be written as w(x , t) = y(x , t) + r(x , t)
where r(x , t) is a reference function satisfying the nonhomogeneous
BCs and y(x , t) is an unknown function, to be found later.



Reference Function

Find any function r(x , t) which satisfies the nonhomogeneous BCs:

w(0, t) = ϕ(t) for t > 0
w(L, t) = ψ(t) for t > 0.

Many solutions are possible, but a straightforward one is

r(x , t) =
x
L
[ψ(t)− ϕ(t)] + ϕ(t).

If w(x , t) = y(x , t) + r(x , t) solves the IBVP given earlier with
nonhomogeneous BCs, find the IBVP which y(x , t) solves.
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Related IBVP with Homogeneous BCs

wtt = ytt +
x
L
[ψ′′(t)− ϕ′′(t)] + ϕ′′(t)

wxx = yxx

ytt = c2yxx − x
L
[ψ′′(t)− ϕ′′(t)]− ϕ′′(t) for 0 < x < L, t > 0

y(0, t) = y(L, t) = 0 for t > 0

y(x ,0) = f (x)− x
L
[ψ(0)− ϕ(0)]− ϕ(0) for 0 < x < L

yt(x ,0) = g(x)− x
L
[ψ′(0)− ϕ′(0)]− ϕ′(0) for 0 < x < L.

Remark: the IBVP for y(x , t) has homogeneous Dirichlet boundary
conditions, but a nonhomogeneous PDE. We must decompose it into
two additional sub-problems in order to solve it.
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Two More Sub-Problems
Note: the dependent variables are again named v and w though they
are not the same functions as mentioned earlier.

IBVP with homogeneous PDE:

wtt = c2wxx for 0 < x < L, t > 0
w(0, t) = w(L, t) = 0 for t > 0

w(x ,0) = f (x)− x
L
[ψ(0)− ϕ(0)]− ϕ(0) for 0 < x < L

wt(x ,0) = g(x)− x
L
[ψ′(0)− ϕ′(0)]− ϕ′(0) for 0 < x < L.

IBVP with nonhomogeneous PDE:

vtt = c2vxx − x
L
[ψ′′(t)− ϕ′′(t)]− ϕ′′(t) for 0 < x < L, t > 0

v(0, t) = v(L, t) = 0 for t > 0
v(x ,0) = 0 for 0 < x < L
vt(x ,0) = 0 for 0 < x < L.



IBVP With Homogeneous PDE

wtt = c2wxx for 0 < x < L, t > 0
w(0, t) = w(L, t) = 0 for t > 0

w(x ,0) = f (x)− x
L
[ψ(0)− ϕ(0)]− ϕ(0) for 0 < x < L

wt(x ,0) = g(x)− x
L
[ψ′(0)− ϕ′(0)]− ϕ′(0) for 0 < x < L.

Remark: this IBVP has homogeneous Dirichlet BCs and thus we can
express the solution as a Fourier series:

w(x , t) =
∞∑

n=1

(
an cos

cnπt
L

+ bn sin
cnπt

L

)
sin

nπx
L
.



IBVP with nonhomogeneous PDE

vtt = c2vxx − x
L
[ψ′′(t)− ϕ′′(t)]− ϕ′′(t) for 0 < x < L, t > 0

v(0, t) = v(L, t) = 0 for t > 0
v(x ,0) = 0 for 0 < x < L
vt(x ,0) = 0 for 0 < x < L.

Remark: this IBVP has homogeneous Dirichlet BCs and ICs of zero.
We will solve this nonhomogeneous PDE in more generality by
assuming the nonhomogeneity is a function F (x , t).



Finding the Solution to the Nonhomogeneous PDE

utt = c2uxx + F (x , t) for 0 < x < L, t > 0
u(0, t) = u(L, t) = 0 for t > 0
u(x ,0) = 0 for 0 < x < L
ut(x ,0) = 0 for 0 < x < L.

Assume the solution has the form

u(x , t) =
∞∑

n=1

Tn(t) sin
nπx

L
.

Differentiate and substitute into the PDE.



Differentiating the Solution

utt = c2uxx + F (x , t)
∞∑

n=1

T ′′
n (t) sin

nπx
L

= −c2
∞∑

n=1

(nπ
L

)2
Tn(t) sin

nπx
L

+ F (x , t)

Rearrange terms to isolate the nonhomogeneous term.

∞∑
n=1

[
T ′′

n (t) +
(nπc

L

)2
Tn(t)

]
sin

nπx
L

= F (x , t)

Multiply both sides by sin(mπx)/L and integrate from x = 0 to x = L.



Orthogonality

Since sin(nπx)/L and sin(mπx)/L are orthogonal when n ̸= m then

T ′′
m(t) +

(mπc
L

)2
Tm(t) =

2
L

∫ L

0
F (x , t) sin

mπx
L

dx = Fm(t)

for m ∈ N.

For n = 1,2, . . . we must solve the initial value problems:

T ′′
n (t) +

(nπc
L

)2
Tn(t) = Fn(t)

Tn(0) = 0
T ′

n(0) = 0.
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Example

Find the solution to the following IBVP:

utt = uxx + t sin x for 0 < x < π and t > 0
u(0, t) = u(π, t) = 0 for t > 0
u(x ,0) = sin x for 0 < x < π

ut(x ,0) = sin(3x) for 0 < x < π.



Solution (1 of 7)

Find the solution to the homogeneous IBVP:

wtt = wxx for 0 < x < π and t > 0
w(0, t) = w(π, t) = 0 for t > 0
w(x ,0) = sin x for 0 < x < π

wt(x ,0) = sin(3x) for 0 < x < π.

This can be found readily in d’Alembertian form.



Solution (2 of 7)

w(x , t) =
1
2
(sin(x − t) + sin(x + t)) +

1
2

∫ x+t

x−t
sin(3s)ds

=
1
2
(sin(x − t) + sin(x + t)) +

1
6
(cos3(x − t)− cos3(x + t))

= sin x cos t +
1
3
sin(3x) sin(3t)



Solution (3 of 7)

Now find the solution to the IBVP containg the nonhomogeneous
PDE and zero initial conditions.

vtt = vxx + t sin x for 0 < x < π and t > 0
v(0, t) = v(π, t) = 0 for t > 0
v(x ,0) = 0 for 0 < x < π

vt(x ,0) = 0 for 0 < x < π.

Make the assumption that the solution can be expressed as

v(x , t) =
∞∑

n=1

Tn(t) sin(n x).



Solution (4 of 7)

Differentiating v(x , t) and substituting into the PDE produce:

∞∑
n=1

T ′′
n (t) sin(n x) = −

∞∑
n=1

n2Tn(t) sin(n x) + t sin x

∞∑
n=1

(
Tn(t) + n2Tn(t)

)
sin(n x) = t sin x .

Multiply both sides by sin(m x) and integrate over [0, π].
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Solution (5 of 7)

T ′′
m(t) + m2Tm(t) =

2
π

∫ π

0
t sin x sin(m x)dx

=

{
t if m = 1
0 if m = 2,3, . . .

Solve the initial value problems:

T ′′
1 (t) + T1(t) = t

T ′′
n (t) + n2Tn(t) = 0

for n = 2,3, . . . with zero initial conditions.
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Solution (6 of 7)

We can immediately check that Tn(t) = 0 for n = 2,3, . . ..

T1(t) = A1 cos t + B1 sin t + t

Making use of the initial conditions (T1(0) = T ′
1(0) = 0) reveals,

T1(t) = t − sin t .

This implies,

v(x , t) = T1(t) sin x = (t − sin t) sin x .



Solution (7 of 7)

u(x , t) = w(x , t) + v(x , t)

= sin x cos t +
1
3
sin(3x) sin(3t) + (t − sin t) sin x .



Homework

▶ Read Sections 5.4
▶ Exercises: 18–20


