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Objectives

In this lesson we will learn:
» a change of variable technique which simplifies the wave
equation,
» d’Alembert’s solution to the wave equation which avoids the
summing of a Fourier series solution.



Wave Equation

Consider the initial value problem for the unbounded, homogeneous
one-dimensional wave equation

Ut = CPUyy for —oo < x < coand t > 0
u(x,0) = f(x)
Ut(X,O) :g(X)



Wave Equation

Consider the initial value problem for the unbounded, homogeneous
one-dimensional wave equation

Ut = CPUyy for —oo < x < coand t > 0
u(x,0) = f(x)
Ut(X,O) :g(X)

Rewrite the PDE by making the change of variables

E=x+ct
n=Xx-—ct



Change of Variables

First partial derivatives:

Uy = Ug&x + Upnx = Ug + Uy
U = Ug&t + Upne = C(Ug — Uy)

Second partial derivatives:

Uxx = Uge€x + Ugynx + Unex + Upytix = Uge + 2Ugy + Uny
Ut = C(Ugeét + Ugymt) — C(Uneét + Unynt) = CZ(UEE — 2Ugy + Upn)



Substitution into Wave Equation

Uy = Czuxx
2
C(Uge — 2Ugy + Upy) = C*(Uge + 2Ugy + Upy)



Substitution into Wave Equation

Uy = Czuxx
2
C(Uge — 2Ugy + Upy) = C*(Uge + 2Ugy + Upy)
Uep = 0



Substitution into Wave Equation

Uy = Czuxx
2
C(Uge — 2Ugy + Upy) = C*(Uge + 2Ugy + Upy)
Ugp =0

Integrate both sides of the equation.

ue = ¢(§)
u(e,n) = / o(€) de
— () + V(1)

Functions ¢ and W are arbitrary smooth functions.



Return to the Original Variables

u(&,m) = (&) +Vv(n)
u(x,t)=d(x+ct)+V(x —ct)

This is referred to as d’Alembert’s general solution to the wave
equation.



Return to the Original Variables

u(&,m) = (&) +Vv(n)
u(x,t)=d(x+ct)+V(x —ct)

This is referred to as d’Alembert’s general solution to the wave
equation.

Question: can ¢ and V¥ be chosen to satisfy the initial conditions?



Plucked String (1 of 2)

u(x,t)y=d(x+ct)+V(x —ct)
u(x,0) = d(x) + ¥(x) = f(x)
u(x,0) =cd’'(x) —cV¥'(x) =0

where K is an arbitrary constant.



Plucked String (1 of 2)

u(x,t)y=d(x+ct)+V(x —ct)
u(x,0) = &(x) + V(x) = f(x)
u(x,0) =cd’'(x) —cV¥'(x) =0

where K is an arbitrary constant.

Substituting into the equation for the initial displacement produces
2U(x) + K = f(x)

V(x) = 4 (1(x) ~ K)
wm:%mn+m.



Plucked String (2 of 2)

Consequently if f is twice differentiable, then
u(x,t) = % [f(x+ct)+f(x—ct)]

solves the initial value problem describing the plucked string.



Struck String (1 of 2)

u(x,t)=d(x+ct) +V¥(x—ct)
u(x,0) =d(x)+WV¥(x)=0
u(x,0) = cd’'(x) — cV'(x) = g(x)

Differentiating the 2nd equation reveals ¢'(x) = —V’(x)



Struck String (1 of 2)

u(x,t)=d(x+ct) +V¥(x—ct)
u(x,0) =d(x)+WV¥(x)=0
u(x,0) = cd’'(x) — cV'(x) = g(x)

Differentiating the 2nd equation reveals ¢'(x) = —V’(x)

Substituting into the 3rd equation produces
2c¢'(x) = g(x)

O(x) = ;C/()Xg(s)ds+K

V(x) = —;C/Oxg(s)ds—K.



Struck String (2 of 2)

Consequently if g is continuously differentiable, then

Xx+ct x—ct
u(x,t) = 2% [/0 g(s)ds — /0 a(s) ds}

1 Xx+ct 0
= %6 [/0 g(s)ds + /Xctg(s) ds]

1 x+ct
= 2—0/ g(s)ds

—ct

solves the initial value problem describing the struck string.



Nonzero Displacement and Velocity

By the Principle of Superposition, the general solution is

u(x,t) = % [f(x—ct)+f(x+ct)] + 2lc /Xi:tg(s) ds.



Example: Plucked String

Determine the solution to the initial value problem:

U = C2Uyy for —co < X < coand t > 0

2 if-1<x<1
u(x,0) = f(x) = { 0 otherwise

u(x,0) =0



Solution (1 of 7)

Using d’Alembert’s solution

u(x,t) = % [f(x+ct)+f(x—ct).

Note:

> Along lines where x + ct is constant the term f(x 4 ct) is
constant.

> Likewise along lines where x — ct is constant the term f(x — ct)
is constant.

» These lines are called characteristics.



Solution (2 of 7)

f 2 if-1<x<1
(x) = 0 otherwise

2 if-1<x+ct<t
f(X+Ct){ 0 otherwise
1 1 if-1-ct<x<1-ct
gf(X+Ct)_{ 0 otherwise



Solution (2 of 7)

F(x) — 2 if-1<x<1
(x) = 0 otherwise
2 if-1<x+ct<t

f(X+Ct){ 0 otherwise

1 1 if-1-ct<x<1-ct
2f(X+Ct)_{ 0 otherwise

1fx cf) — 1 f—1+ct<x<1+ct
2( —ch)= 0 otherwise



Solution (2 of 7)

F(x) — 2 if-1<x<1
(x) = 0 otherwise
2 if-1<x+ct<t

f(X+Ct){ 0 otherwise

1 1 if-1—-ct<x<i1-ct
2f(X+Ct)_{ 0 otherwise

1ok cno ] 1 if-T+ct<x<i+ct
5/ X=¢ =10 otherwise

Remark: the characteristics where x + ct = +1and x — ct = +1
help determine the solution.



Solution (3 of 7)

Region 6 Region 5 Region 4

er — X-ct=-1

x-ct=1
s — X+cCct=-1

— X+ct=1

Region 1 Region 3

I
-3 -2 -1 0 1 2 3



Solution (4 of 7)

Region 1: {(x,t)|x+ct< -1}

Region 2: {(x,f)] —1<x—ctandx+ct< 1}
Region 3: {(x,f)|1 < x —ct}

Region 4: {(x,t)|1 <x+ctand —1<x—ct< 1}
Region 5: {(x,t)|1 <x+ctandx—ct< —1}
Region 6: {(x,t)] —1<x+ct<landx—ct< -1}



Solution (5 of 7)

u(x, ) = ﬂx+cn+%ﬂx—cn

ifx+ct< -1

f—1<x—ct<land -1<x+ct<1
if1<x-—ct

if1<x+ctand -1<x—-ct<1
ifi1<x+ctandx—ct< —1
if-1<x+ct<tandx-—ct< -1

Il
’_/—I\)‘_L
- OoO—=0DMNO



Solution (6 of 7)

— x-ct=-1
x-ct=1
— X+ct=-1

— X+ct=1




Solution (7 of 7)




Example: Struck String

Determine the solution to the initial value problem:

Ut = C2Uyy for —co < X < coand t > 0
u(x,0)=0

1 if—1<x<1
u(x,0) = g(x) = { 0 otherwise



Solution (1 of 6)

Define the function

z -1 ifz< -1
G(z):/ g(w)adw = z if—1<z<1
0 1 ifz>1.

then
u(x,t) = 2% [G(x+ct)— G(x —ct)].

As in the previous example, the characteristics x + ¢t = +1 and
Xx — ¢t = +1 divide the xt-plane into six regions.



Solution (2 of 6)

Region 6 Region 5 Region 4

er — X-ct=-1

x-ct=1
s — X+cCct=-1

— X+ct=1

Region 1 Region 3

I
-3 -2 -1 0 1 2 3



Solution (3 of 6)

Region 1: {(x,t)|x+ct< -1}

Region 2: {(x,f)] —1<x—ctandx+ct< 1}
Region 3: {(x,f)|1 < x —ct}

Region 4: {(x,t)|1 <x+ctand —1<x—ct< 1}
Region 5: {(x,t)|1 <x+ctandx—ct< —1}
Region 6: {(x,t)] —1<x+ct<landx—ct< -1}



Solution (4 of 6)

Gx+ct ——G( —ct)

ifx+ct<—1
th if —1<x—ctandx+ct< 1
ift<x-—ct
1—x+ct ftf<x+ctand -1 <x-—-ct<1
ftf<x+ctandx—ct< —1
1+x+ct fx—ct<—-1land-1<x+ct<1



— x-ct=-1

— x-ct=1
— x+ct=-1

— x+ct=1







Domain of Dependence (1 of 2)

In general the solution to the initial value problem:

Ut = C2Uyy for —co < X < coand t > 0
u(x,0) = f(x)
Ut(X,O) = g(X)

can be expressed as

u(x, ) = % [F(x+ct) + f(x — ct)] + 217 /:itg(s) ds.

At the point (xo, &) then

Xo+Cly

u(xo, o) = % [f(xo+cty) + f(xo — ct)] + 2%/ g(s) ds.

Xo—Cly



Domain of Dependence (2 of 2)

1 1 Xo+Cly
(X0, 1) = + [F(x0 + c o) + F(x0 — Clo)] + / g(s) ds.
2 2C Jy—ct
Remarks:
> u(xo, Ip) depends only on the values of f(xp & ct) and g(s) for
Xo—Clh <8< Xgp+Cly.
» The interval [xo — c ly, Xo + C ] is called the domain of
dependence.



Domain of Dependence lllustrated

(o, to)

Xo—Cto

Xo



Domain of Influence

The point (X, &) influences the solution u(x, t) for t > t, at all points
between the characteristics passing through (xo, t).

t—1 +1
X—x ¢
c(t — to) = £(x — xo)
+Xxp + C(lL — to) = +Xx



Domain of Influence lllustrated

X = Xg + c(t - o)

(o, to)

Xo




Finite Length String

D’Alembert’s solution to the wave equation can be adapted to the
wave equation with 0 < x < L.

Up = CPuy for0O< x < Land t >0

u(0,t)=u(L,t)=0
u(x,0) = f(x)
u(x,0) = g(x)



Case: Plucked String

Up = CCuy forO< x < Land t >0
u©,t)y=u(L,t)=0
u(x,0) = f(x)
u(x,0)=0

We have used separation of variables and Fourier series to determine

- cnmt . nmx
u(x,t) = Z an cos LW sin %
n=1




Case: Plucked String

Up = CCuy forO< x < Land t >0
u©,t)y=u(L,t)=0
u(x,0) = f(x)
u(x,0)=0

We have used separation of variables and Fourier series to determine

an L
i . mr(x+ct +ia o mx—ci)
" L

n=1

:§Uu+co+ﬂx—cm,

where f(x) is the odd, 2L-periodic extension of the initial
displacement.



Case: Struck String

Up = CPunfor0O< x < Land t >0
u(0,t)=u(L,t)=0

ulL,t)=0
u(x,0)=0
ui(x,0) = g(x)

We have used separation of variables and Fourier series to determine




Case: Struck String

Up = CPunfor0O< x < Land t >0
u(0,t)=u(L,t)=0

ulL,t)=0
u(x,0)=0
ui(x,0) = g(x)

We have used separation of variables and Fourier series to determine




Integrating Term by Term

u(x,t) = % Z [bn cos M — by cos mr(x:—ct)}
n=1

x+ct

1SS nr nrs
= — b —/ sin — ds
2; "L o L
1 et [ & nw1 . Nws
75/)(70t <nz_; [bnT} smT ds
x+ct

L (i 6,5 LS) ds

where g(x) is the odd, 2L-periodic extension of the initial velocity.



Example

Find the solution to the initial boundary value problem

Uy =4uy for0 < x<t1andt>0
u,ty=u(L,t)=0
u(x,0)=0

0 ifx<1/4
u(x,0)=<¢ 1 if1/4<x<3/4
0 if3/4<x<1.

Let g(x) be the odd, 2-periodic extension of u(x, 0).



Solution (1 of 6)

Let go(x) be the odd, 2-periodic extension of u;(x, 0).

ifo<x<1/4
if1/4 <x<3/4
if 3/4 < x <5/4
if5/4<x<7/4
if7/4<x<2

9o(X) =

O -0 -0



Solution (2 of 6)

9o(x)

) I



Solution (3 of 6)

X
Define the function G(x) :/ 9o(8) ds.
0



Solution (3 of 6)

Define the function G(x / 9o(s

[y 0ds ifx<1/4
*,1ds if1/4<x<3/4
1/4
f3/41ds if3/4 < x < 5/4
Jlitds+ [5,(~1)ds if5/4<x<7/4
Jlitds+ [l (—1)ds if7/4<x<2
0 ifx<1/4
x—1/4 if1/4<x<3/4
1/2 if3/4<x <5/4
—X+7/4 if5/4<x<7/4
0 if7/4<x<2



Solution (4 of 6)

G(x+2t) =

G(x —2t) =

0
X+2t—1/4
1/2
—X—2t+7/4
0

0
X—2t—1/4
1/2
—X+2t+7/4
0

if x+2t<1/4
if1/4 < x +2t < 3/4
if3/4 <x+2t<5/4
if5/4<x+2t<7/4
if7/4 <x+2t<2
ifx—2t<1/4
if1/4 <x—2t<3/4
if3/4 <x—2t<5/4
if5/4<x—-2t<7/4
if7/4<x—-2t<2



Solution (5 of 6)

Using d’Alembert’s solution to the wave equation, then
u(x,t) = zlc [G((x+ct) (mod2))—G((x—ct) (mod2))]

- %[G((x +2f) (mod 2)) — G((x —2f) (mod 2))].






Homework

» Read Sections 5.2 and 5.3
» Exercises: 6-10



