Computing the Flow Lines of a Vector Field

Math 311

To find the flow lines of a given vector field $\mathbf{F}(x, y) = \langle f_1(x, y), f_2(x, y) \rangle$:

1. Write

$$\frac{dy}{dx} = \frac{f_2(x,y)}{f_1(x,y)}.$$

- 2. Separate variables, i.e., move things involving x to one side and things involving y to the other.
- 3. Integrate both sides and simplify to obtain an equation in x and y.

Example 1: Find the flow lines of the vector field $\mathbf{F}(x, y) = \langle x, y \rangle$.

1. Assume $x \neq 0$ and write:

$$\frac{dy}{dx} = \frac{y}{x}$$

2. Assume $y \neq 0$ and separate variables:

$$\frac{dy}{y} = \frac{dx}{x}$$

3. Integrate and simplify:

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\ln |y| + C_1 = \ln |x| + C_2$$

$$\ln |y| = \ln |x| + C$$

$$e^{\ln|y|} = e^{\ln|x|+C} = e^C e^{\ln|x|}$$

$$|y| = a |x|, \text{ where } a > 0 \text{ and } x \neq 0$$

$$y = \pm ax, \text{ where } a > 0 \text{ and } x \neq 0.$$

Note that the vectors $\mathbf{F}(x,0) = \langle x,0 \rangle$ are tangent to the *x*-axis, so the *x*-axis is a flow line; likewise, vectors $\mathbf{F} \langle 0, y \rangle$ are tangent to the *y*-axis, so the *y*-axis is also a flow line. We conclude that the flow lines are all lines through the origin.

Example 2. Let $\mathbf{F} = \langle x, -y \rangle$.

Compute the equations of the flow lines:

$$\frac{dy}{dx} = -\frac{y}{x}$$
$$\int \frac{dy}{y} = -\int \frac{dx}{x}$$
$$\ln |y| = -\ln |x| + A$$
$$\ln |xy| = A$$
$$|xy| = e^{A}$$
$$xy = C; \ C \neq 0.$$

Now plot xy = C with $C = \pm .5, \pm 1, \pm 2, \pm 3$:

Example 3. Let $\mathbf{F} = \langle x^3, -y^3 \rangle$.

1	1	¥	ŧ	ŧ	ŧ	ł	ł	ł	ł	ł	ł	ł	1	\mathbf{x}
1	*	۶	۶	۲	*	۲	ŧ	+	ŧ	۲	٩	×	\mathbf{X}	$\mathbf{\tilde{x}}$
~	,	,	1	Ţ	۲	T.	t	۲	۲	٦	٩	٩	\mathbf{x}	-
-	*	۸	*	1	۲	۲	1	۲	١	٩	٠	٠	*	+
+					r	Y	1	۲	۱	٠	•		*	+
-	*	٩	-		۶	1	1	۱	٩	•	-		*	-
-	+	٦	4	4	4	*	1	٩	•	•	•	-	+	
-	٠	۰	4	٩	۹	۹		٠	•	•	•	•	٠	-
+	*	۲	۹	۲	٦	۲	i	1	-	۳	•	۲	+	
-	4	۲	۲	٦	۲	¥.	ł	4	•	۳	۲	۲	٠	
+	4	-	•	•	k.		i		4		٣	•	٠	+
•	•	*	*	¥.	٨	٨	ł		1	4	1	٠	*	-
•	•	•	•	¥.	٨	٨	ł		4	4	4		*	~
~	۲	k	١.	ŧ.	A	¥.	ŧ.	4	,		4	1	1	/
•	۲	۲	١	ŧ	ŧ	ŧ	t	t	t	t	t	1	1	1

Compute the equations of the flow lines:

$$\frac{dy}{dx} = -\frac{y^3}{x^3}$$

$$\int y^{-3} dy = -\int x^{-3} dx$$

$$(-2x^2y^2) \frac{y^{-2}}{-2} = (-2x^2y^2) \left(-\frac{x^{-2}}{-2} + A\right)$$

$$x^2 = -y^2 + Cx^2y^2$$

$$x^2 + y^2 = Cx^2y^2.$$

Plot $x^2 + y^2 = Cx^2y^2$ with C = .25, .5, 1, 2, 3

