3. It is very important to be able to quickly and accurately visualize three-dimensional relationships. In three dimensions, describe how many lines are perpendicular to the unit vector \vec{i} . Describe all lines that are perpendicular to \vec{i} and that pass through the origin. In three dimensions, describe how many planes are perpendicular to the unit vector \vec{i} . Describe all planes that are perpendicular to \vec{i} and that contain the origin.

Plot the indicated points.

Find the distance between the given points.

Compute $\vec{a} + \vec{b}$, $\vec{a} - 3\vec{b}$ and $\left\| 4\vec{a} + 2\vec{b} \right\|$.

15.
$$\vec{a} = \langle 2, 1, -2 \rangle, \ \vec{b} = \langle 1, 3, 0 \rangle$$

17.
$$\vec{a} = \langle -1, 0, 2 \rangle, \ \vec{b} = \langle 4, 3, 2 \rangle$$

(a) Find two unit vectors parallel to the given vector and (b) write the given vector as the product of its magnitude and a unit vector.

21.
$$\langle 3,1,2 \rangle$$

23.
$$\langle 2, -4, 6 \rangle$$

Find a vector with the given magnitude and in the same direction as the given vector.

29. Magnitude 6,
$$\vec{v} = \langle 2, 2, -1 \rangle$$

31. Magnitude 2,
$$\vec{v} = \langle 2, 0, -1 \rangle$$

Find an equation of the sphere with radius r and center (a,b,c).

35.
$$r = 2$$
, $(a,b,c) = (3,1,4)$

37.
$$r = 3$$
, $(a,b,c) = (2,0,-3)$

Identify the geometric shape described by the given equation.

41.
$$(x-1)^2 + y^2 + (z+2)^2 = 4$$

43.
$$x^2 + y^2 - 2y + z^2 + 4z = 4$$

Give an equation (e.g. z = 0) for the given figure.

53. *xz*-plane 55. *yz*-plane