p. 888 (11.4)

Find an arc length parameterization of the given two-dimensional curve.

- 5. The circle of radius 2 centered at the origin.
- 6. The circle of radius 5 centered at the origin.
- 7. The line segment from the origin to the point (3, 4)
- 8. The line segment from (1, 2) to the point (5, -2)

Find the unit tangent vector to the curve at the indicated points.

9.
$$\vec{\mathbf{r}}(t) = \langle 3t, t^2 \rangle$$
, $t = 0$, $t = -1$, $t = 1$
11. $\vec{\mathbf{r}}(t) = \langle 3\cos t, 2\sin t \rangle$, $t = 0$, $t = -\frac{\pi}{2}$, $t = \frac{\pi}{2}$

13.
$$\vec{\mathbf{r}}(t) = \langle 3t, \cos 2t, \sin 2t \rangle, \ t = 0, \ t = -\pi, \ t = \pi$$

15. Sketch the curve in exercise 11 along with the vectors $\vec{r}(0)$, $\vec{T}(0)$, $\vec{r}(\frac{\pi}{2})$ and $\vec{T}(\frac{\pi}{2})$.

17. Sketch the curve in exercise 13 along with the vectors $\vec{r}(0)$, $\vec{T}(0)$, $\vec{r}(\pi)$ and $\vec{T}(\pi)$.

Find the curvature at the given point.

- 19. $\vec{r}(t) = \langle e^{-2t}, 2t, 4 \rangle$, t = 021. $\vec{r}(t) = \langle t, \sin 2t, 3t \rangle$, t = 025. $f(x) = \sin x$, $x = \frac{\pi}{2}$ 26. $f(x) = e^{-3x}$, t = 0
- 27. For $f(x) = \sin x$, show that the curvature is the same at $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$. Use the graph of $y = \sin x$ to predict whether the curvature would be larger or smaller at $x = \pi$.
- 28. For $f(x) = e^{-3x}$, show that the curvature is larger at x = 0 than at x = 2. Use the graph of $y = e^{-3x}$ to predict whether the curvature would be larger or smaller at x = 4.

Sketch the curve and compute the curvature at the indicated points.

29.
$$\vec{\mathbf{r}}(t) = \langle 2\cos 2t, 2\sin 2t, 3t \rangle, \ t = 0, \ t = \frac{\pi}{2}$$

31. $\vec{\mathbf{r}}(t) = \langle t, t, t^2 - 1 \rangle, \ t = 0, \ t = 2$

Sketch the curve and find any points of maximum or minimum curvature. 33. $\vec{r}(t) = \langle 2\cos t, 3\sin t \rangle$ 34. $\vec{r}(t) = \langle 4\cos t, 3\sin t \rangle$

Graph the curvature function $\kappa(x)$ and find the limit of the curvature as $x \to \infty$.

37. $y = e^{2x}$ 38. $y = e^{-2x}$

- 43. Label as True or False and explain: at a relative extremum of y = f(x), the curvature is either a minimum or maximum.
- 44. Label as True or False and explain: at an inflection point of y = f(x), the curvature is zero.