Find all first-order partial derivatives.

$$.f(x,y) = x^3 - 4xy^2 + y^4$$

$$7. f(x, y) = x^2 e^y - 4y$$

$$9.f(x, y) = x^2 \sin xy - 3y^3$$

11.
$$f(x, y) = 4e^{x/y} - \frac{y}{x}$$

$$13.f(x, y, z) = 3x \sin y + 4x^3y^2z$$

15.
$$f(x, y, z) = \frac{2}{\sqrt{x^2 + y^2 + z^2}}$$

Find the indicated partial derivatives.

$$7.f(x,y) = x^3 - 4xy^2 + 3y; \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial y \partial x}$$

$$19.f(x,y) = x^4 - 3x^2y^3 + 5y; f_{xx}, f_{xy}, f_{xyy}$$

$$21.f(x, y, z) = x^{3}y^{2} - \sin yz; f_{xx}, f_{yz}, f_{xyz}$$

23.
$$f(x, y, z) = e^{2xy} - \frac{z^2}{y} + xz \sin y; f_{xx}, f_{yy}, f_{yyzz}$$

$$25.f(w, x, y, z) = w^{2}xy - e^{wz}; f_{ww}, f_{wxy}, f_{wwxyz}$$

(a) Sketch the graph of z=f(x,y) and (b) on this graph, highlight the appropriate two-dimensional trace and interpret the partial derivative as a slope.

27.
$$f(x, y) = 4 - x^2 - y^2$$
, $\frac{\partial f}{\partial x}(1, 1)$

29.
$$f(x, y) = 4 - x^2 - y^2, \frac{\partial f}{\partial y}(1, 1)$$

$$31.f(x,y) = 4 - x^2 - y^2, \frac{\partial f}{\partial y}(2,0)$$

Find all points at which $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$ and interpret the significance of the points

graphically.

$$39.f(x,y) = x^2 + y^2$$

$$41.f(x,y) = \sin x \sin y$$

Use the contour plot to estimate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the origin.

- 43. (Image in book)
- 45. (Image in book)
- 61. Suppose that three resistors are in parallel in an electrical circuit. If the resistance are R_1 , R_2 and R_3 ohms, respectively, then the net resistance in the circuit equals

$$R = \frac{R_1 R_2 R_3}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$
. Compute and interpret the partial derivative $\frac{\partial R}{\partial R_1}$. Given this

partial derivative, explain how to quickly write down the partial derivatives $\frac{\partial R}{\partial R_2}$ and

$$\frac{\partial R}{\partial R_3}$$
.