Find the gradient of the given function.

5.
$$f(x, y) = x^2 + 4xy^2 - y^5$$

7.
$$f(x, y) = xe^{xy^2} + \cos y^2$$

Find the gradient of the given function at the indicated point.

9.
$$f(x, y) = 2e^{4x/y} - 2x$$
, (2,-1)

11.
$$f(x,y) = \sqrt{x^2 + y^2}$$
, (4,-3)

13.
$$f(x, y, z) = 3x^2y - z\cos x$$
, $(0, 2, -1)$

Compute the directional derivative of f at the given point in the direction of the indicated vector.

15.
$$f(x,y) = x^2y + 4y^2$$
, (2,1), $\vec{u} = \left\langle \frac{1}{2}, \frac{\sqrt{3}}{2} \right\rangle$

17.
$$f(x, y) = x^2 y + 4y^2$$
, (2,1), $\vec{u} = \left\langle \frac{1}{2}, -\frac{\sqrt{3}}{2} \right\rangle$

27.
$$f(x, y, z) = x^3yz^2 - 4xy$$
, $(1, -1, 2)$, \vec{u} in the direction of $\langle 2, 0, -1 \rangle$.

29.
$$f(x, y, z) = e^{xy+z}$$
, $(1, -1, 1)$, \bar{u} in the direction of $\langle 4, -2, 3 \rangle$.

Find the directions of maximum and minimum change of f at the given point, and the values of the maximum and minimum rates of change.

31.
$$f(x, y) = x^2 + y^3$$
, (2,1)

33.
$$f(x, y) = y^2 e^{4x}$$
, $(0, -2)$

35.
$$f(x, y) = x \cos 3y$$
, (2,0)

39.
$$f(x, y, z) = 4x^2yz^3$$
, (1, 2, 1)

Find equations of the tangent plane and normal line to the surface at the given point.

45.
$$z = x^2 + y^2$$
 at $(1, -1, 0)$

47.
$$x^2 + y^2 + z^2 = 6$$
 at $(-1, 2, 1)$

Find all points at which the tangent plane to the surface is parallel to the *xy*-plane. Discuss the graphical significance of each point.

49.
$$z = 2x^2 - 4xy + y^4$$

Sketch the path of steepest ascent from the indicated point.

- 55. (Image in book)
- 63. If the temperature at the point (x, y, z) is given by $T(x, y, z) = 80 + 5e^{-z}(x^{-2} + y^{-1})$, find the direction from the point (1,4,8) in which the temperature decreases most rapidly.
- 64. If the temperature at the point (x, y, z) is given by $T(x, y, z) = 80 + 5e^{-z}(x^{-2} + y^{-1})$, find the direction from the point (1,4,8) in which the temperature increases most rapidly.