p.1070 (13.6)

Write the given equation in cylindrical coordinates.

5. $x^{2} + y^{2} = 16$ 9. $z = x^{2} + y^{2}$ 13. y = x

Set up the triple integral $\iiint_{Q} f(x, y, z) dV$ in cylindrical coordinates.

- 15. *Q* is the region above $z = \sqrt{x^2 + y^2}$ and below $z = \sqrt{8 x^2 y^2}$.
- 17. *Q* is the region above the *xy*-plane and below $z = 9 x^2 y^2$.
- 19. *Q* is the region above $z = x^2 + y^2$ and below z = 4.
- 21. Q is the region bounded by $y = 4 x^2 z^2$ and y = 0.
- 23. *Q* is the region bounded by $x = y^2 + z^2$ and $x = 2 y^2 z^2$.

Set up and evaluate the indicated triple integral in the appropriate coordinate system.

- 25. $\iiint_Q e^{x^2 + y^2} dV$, where Q is the region inside $x^2 + y^2 = 4$ and between z = 1 and z = 2.
- 27. $\iiint_Q (x+z)dV$, where Q is the region inside x+2y+3z=6 in the first octant.
- 29. $\iiint_Q z dV$, where Q is the region between $z = \sqrt{x^2 + y^2}$ and $z = \sqrt{4 x^2 y^2}$.
- 31. $\iiint_Q (x+y)dV$, where Q is the tetrahedron bounded by x+2y+z=4 and the

coordinate planes.

- 33. $\iiint_{Q} e^{z} dV$, where Q is the region inside $x^{2} + y^{2} = 9$ and between $z = x^{2} + y^{2}$ and z = 0.
- 35. $\iiint_Q 2xdV$, where Q is the region between $z = \sqrt{x^2 + y^2}$ and z = 0 and inside $x^2 + (y-1)^2 = 1$.

Evaluate the iterated integral after changing coordinate system.

37. $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} 3z^{2} dz dy dx$ 39. $\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{8-x^{2}-y^{2}}} 2 dz dx dy$ Sketch the graphs of the cylindrical equations.

43. z = r45. $z = 4 - r^2$ 47. $r = 2 \sec \theta$ 49. $\theta = \frac{\pi}{4}$

Find the mass and center of mass of the solid with the given density and bounded by the graphs of the indicated equations.

51. $\rho(x, y, z) = \sqrt{x^2 + y^2}$, bounded by $z = \sqrt{x^2 + y^2}$ and z = 4. 53. $\rho(x, y, z) = 4$, between $z = x^2 + y^2$ and z = 4 and $x^2 + (y - 1)^2 = 1$.