Convert the spherical point (ρ,ϕ,θ) into rectangular coordinates.

- 5. $(4,0,\pi)$
- 7. $(4, \frac{\pi}{2}, 0)$
- 9. $(2, \frac{\pi}{4}, 0)$
- 11. $(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{4})$

Convert the equation into spherical coordinates.

13.
$$x^2 + y^2 + z^2 = 9$$

- 15. y = x
- 17. z = 2
- 19. $z = \sqrt{3(x^2 + y^2)}$

Sketch the graph of the spherical equation.

- 21. $\rho = 2$
- 23. $\phi = \frac{\pi}{4}$
- 25. $\theta = 0$
- 27. $\phi = \frac{3\pi}{4}$

Sketch the region defined by the given ranges.

- 29. $0 \le \rho \le 4$, $0 \le \phi \le \frac{\pi}{4}$, $0 \le \theta \le \pi$
- 31. $0 \le \rho \le 2$, $0 \le \phi \le \frac{\pi}{2}$, $0 \le \theta \le \pi$
- 33. $0 \le \rho \le 3$, $0 \le \phi \le \pi$, $0 \le \theta \le \pi$

Set up and evaluate the indicated triple integral in an appropriate coordinate system.

- 39. $\iiint_{Q} (x^2 + y^2 + z^2)^{5/2} dV$, where *Q* is bounded by $x^2 + y^2 + z^2 = 2$, $z \ge 0$ and the *xy*-plane.
- 41. $\iiint_{Q} (x^2 + y^2 + z^2) dV$, where Q is the cube with $0 \le x \le 1$, $1 \le y \le 2$ and $3 \le z \le 4$.
- 43. $\iiint_Q (x^2 + y^2) dV$, where Q is bounded by $z = 4 x^2 y^2$ and the xy-plane.

Use an appropriate coordinate system to find the volume of the given solid.

- 47. The region below $x^2 + y^2 + z^2 = 4z$ and above $z = \sqrt{x^2 + y^2}$
- 49. The region inside $z = \sqrt{x^2 + y^2}$ and below z = 4
- 51. The region under $z = \sqrt{x^2 + y^2}$ and above the square $-1 \le x \le 1$, $-1 \le y \le 1$
- 53. The region below $x^2 + y^2 + z^2 = 4$, above $z = \sqrt{x^2 + y^2}$ in the first octant.

Evaluate the iterated integral by changing coordinate systems.

57.
$$\int_{0}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}-y^{2}}}^{\sqrt{1-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} dz dy dx$$

59.
$$\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{8-x^2-y^2}} (x^2+y^2+z^2)^{3/2} dz dy dx$$

- 61. Find the center of mass of the solid with constant density and bounded by $z = \sqrt{x^2 + y^2}$ and $z = \sqrt{4 x^2 y^2}$.
- 62. Find the center of mass of the solid with constant density in the first quadrant and bounded by $z = \sqrt{x^2 + y^2}$ and $z = \sqrt{4 x^2 y^2}$.