p. 1120 (14.2)

Evaluate the line integral.

- 5. $\int_{C} (2x) ds$, where *C* is the line segment from (1, 2) to (3, 5)
- 7. $\int_{C} (3x+y)ds$, where C is the line segment from (5, 2) to (1, 1)
- 11. $\int_{C} (3x)ds$, where C is the quarter-circle $x^2 + y^2 = 4$ from (2, 0) to (0, 2)
- 15. $\int_C (3y)dx$, where C is the half-ellipse $x^2 + 4y^2 = 4$ from (0, 1) to (0, -1) with $x \ge 0$
- 17. $\int_{C} (3y) ds$, where C is the portion of $y = x^2$ from (0, 0) to (2, 4)
- 19. $\int_{C} (2x) dx$, where C is the portion of $y = x^2$ from (2, 4) to (0, 0)
- 25. $\int_{C} (4z) ds$, where *C* is the line segment from (1, 0, 1) to (2, -2, 2)
- 27. $\int_{C} [4(x-z)z] dx$, where C is the portion of $y = x^2$ in the plane z = 2 from (1, 1, 2) to (2, 4, 2)

Compute the work done by the force \vec{F} along the curve *C*.

- 29. $\vec{F}(x, y) = \langle 2x, 2y \rangle$, *C* is the line segment from (3, 1) to (5, 4)
- 31. $\vec{F}(x, y) = \langle 2x, 2y \rangle$, *C* is the line segment from (4, 0) to (0, 4)
- 33. $\vec{F}(x, y) = \langle 2, x \rangle$, *C* is the portion of $y = x^2$ from (0, 0) to (1, 1)
- 35. $\vec{F}(x, y) = \langle 3x, 2 \rangle$, *C* is the line segment from (0, 0) to (0, 1) followed by the line segment to (4, 1)
- 37. $\vec{F}(x, y, z) = \langle y, 0, z \rangle$, C is the triangle from (0, 0, 0) to (2, 1, 2) to (2, 1, 0) to (0, 0, 0)
- 39. $\vec{F}(x, y, z) = \langle xy, 3z, 1 \rangle$, C is the helix $x = \cos t$, $y = \sin t$, z = 2t and (1, 0, 0) to $(0, 1, \pi)$

Use the graph to determine if the work done is positive, negative or zero.

- 41. (Image in book)
- 43. (Image in book)
- 45. (Image in book)

Find the surface area extending from the given curve to the given surface.

59. Above the quarter-circle from (2, 0, 0) to (0, 2, 0) up to the surface $z = x^2 + y^2$ 61. Above the line segment from (2, 0, 0) to (-2, 0, 0) up to the surface $z = 4 - x^2 - y^2$