p.1142 (14.4)

Evaluate the indicated line integral (a) directly and (b) using Green's Theorem. 5. $\oint_C (x^2 - y)dx + (y^2)dy$, where *C* is the circle $x^2 + y^2 = 1$ oriented counterclockwise 7. $\oint_C (x^2)dx - (x^3)dy$, where *C* is the square from (0, 0) to (0, 2) to (2, 2) to (2, 0) to (0, 0)

Use Green's Theorem to evaluate the indicated line integral.

- 9. $\iint_C (xe^{2x})dx (3x^2y)dy$, where *C* is the square from (0, 0) to (3, 0) to (3, 2) to (0, 2) to (0, 0)
- 11. $\iint_C \left(\frac{x}{x^2+1} y\right) dx + (3x 4\tan y) dy$, where *C* is the portion of $y = x^2$ from (-1, 1) to
 - (1, 1) followed by the portion of $y = 2 x^2$ from (1, 1) to (-1, 1)
- 13. $\iint_{C} (\tan x y^3) dx + (x^3 \sin y) dy$, where C is the circle $x^2 + y^2 = 2$ oriented clockwise
- 15. $\iint_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle x^3 y, x + y^3 \rangle$ and *C* is formed by $y = x^2$ and y = x oriented positively

Use a line integral to compute the area of the given region.

- 25. The ellipse $4x^2 + y^2 = 16$
- 27. The region bounded by $x^{2/3} + y^{2/3} = 1$ (Hint: Let $x = \cos^3 t$ and $y = \sin^3 t$)
- 29. The region bounded by $y = x^2$ and y = 4