Find the parametric representation of the surface.

5.
$$z = 3x + 4y$$

7.
$$x^2 + y^2 - z^2 = 1$$

9. The portion of
$$x^2 + y^2 = 4$$
 from $z = 0$ to $z = 2$.

11. The portion of
$$z = 4 - x^2 - y^2$$
 above the xy-plane.

Sketch a graph of the parametric surfaces.

13.
$$x = u$$
, $y = v$, $z = u^2 + 2v^2$

15.
$$x = u \cos v$$
, $y = u \sin v$, $z = u^2$

17.
$$x = u$$
, $y = \sin u \cos v$, $z = \sin u \sin v$

19.
$$x = 2\sin u \cos v$$
, $y = 2\sin u \sin v$, $z = 2\cos u$

Find the surface area of the given surface.

23. The portion of the cone
$$z = \sqrt{x^2 + y^2}$$
 below the plane $z = 4$

25. The portion of the plane
$$3x + 2y + z = 6$$
 inside the cylinder $x^2 + y^2 = 4$

27. The portion of the cone
$$z = \sqrt{x^2 + y^2}$$
 above the triangle with vertices (0,0), (1,0) and (1,1)

29. The portion of the hemisphere
$$z = \sqrt{4 - x^2 - y^2}$$
 above the plane $z = 1$

Set up a double integral and evaluate the surface integral $\iint_S g(x, y, z) dS$.

31.
$$\iint_S x \, dS$$
, S is the portion of the plane $z = 2x + 3y$ above the rectangle $1 \le x \le 2$, $1 \le y \le 3$

33.
$$\iint_{S} (x+y)dS$$
, S is the portion of the paraboloid $z = x^2 + y^2$ below $z = 4$

35.
$$\iint_{S} (x^2 + y^2) dS$$
, S is the portion of the paraboloid $z = 4 - x^2 - y^2$ above the xy-plane

37.
$$\iint_S z \ dS$$
, S is the portion of the cone $z = \sqrt{x^2 + y^2}$ below the plane $z = 4$

Evaluate the flux integral $\iint_{S} \vec{F} \cdot \vec{n} dS$.

- 41. $\vec{F} = \langle x, y, z \rangle$, S is the portion of $z = 4 x^2 y^2$ above the xy-plane (\vec{n} upward)
- 43. $\vec{F} = \langle y, -x, z \rangle$, S is the portion of $z = \sqrt{x^2 + y^2}$ below z = 3 (\vec{n} downward)
- 67. Explain the following result geometrically. The flux integral of $\vec{F}(x, y, z) = \langle x, y, z \rangle$ across the cone $z = \sqrt{x^2 + y^2}$ is 0.