p. 1174 (14.7)

Verify the Divergence Theorem by computing both integrals.

5. $\vec{F} = \langle 2xz, y^2, -xz \rangle$, Q is the cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$

Use the Divergence Theorem to compute $\iint_{\Omega} \vec{F} \cdot \vec{n} dS$.

- 9. *Q* is bounded by x + y + 2z = 2 (first octant) and the coordinate planes, $\vec{F} = \langle 2x y^2, 4xz 2y, xy^3 \rangle$.
- 11. *Q* is the cube $-1 \le x \le 1$, $-1 \le y \le 1$, $-1 \le z \le 1$, $\vec{F} = \langle 4y^2, 3z \cos x, z^3 x \rangle$.
- 13. *Q* is bounded by $z = x^2 + y^2$ and z = 4, $\vec{F} = \langle x^3, y^3 z, xy^2 \rangle$.
- 15. *Q* is bounded by $z = \sqrt{x^2 + y^2}$ and z = 4, $\vec{F} = \langle y^3, x + z^2, z + y^2 \rangle$.

Find the flux of \vec{F} over ∂Q .

- 21. *Q* is bounded by $z = \sqrt{x^2 + y^2}$ and $z = \sqrt{2 x^2 y^2}$, $\vec{F} = \langle x^2, z^2 x, y^3 \rangle$.
- 23. *Q* is bounded by $z = \sqrt{x^2 + y^2}$, $x^2 + y^2 = 1$ and z = 0, $\vec{F} = \langle y^2, x^2z, z^2 \rangle$.
- 25. *Q* is bounded by $x^2 + y^2 = 1$, y = 0 and y = 1, $\vec{F} = \langle z y^3, 2y \sin z, x^2 z \rangle$.
- 27. *Q* is bounded by $x = y^2 + z^2$ and x = 4, $\vec{F} = \langle x^3, y^3 z, z^3 y^2 \rangle$.