MATH 261 – CALCULUS III REVIEW OF FACTS AND FORMULAS FROM CHAPTER 11

Position function for a projectile: $\mathbf{r}(t) = (\mathbf{v}_x t + x_0) \mathbf{i} + (-16t^2 + \mathbf{v}_y t + y_0) \mathbf{j}$

Given a smooth position function: $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, a \leq t \leq b$:

Velocity: $\mathbf{v} = \mathbf{r}'$

Speed: $v = \|\mathbf{v}\|$

Acceleration: $\mathbf{a} = \mathbf{v}'$

Unit tangent: $\mathbf{T} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$

Unit normal: $\mathbf{N} = \frac{\mathbf{T}'}{\|\mathbf{T}'\|}$

The graph of \mathbf{r} bends towards \mathbf{N} .

The 90° counterclockwise and clockwise rotations of $\langle a,b\rangle$ are $\langle -b,a\rangle$ and $\langle b,-a\rangle$, respectively.

Arc length function: $s(t) = \int_{a}^{t} \|\mathbf{v}(u)\| du$

Curvature if **r** is a *unit speed plane curve* (z = 0):

$$K = \left|\theta'(s)\right|, \text{ where } \theta(s) = \cos^{-1}\left[\mathbf{T}(s)\bullet\mathbf{i}\right]$$

Curvature if **r** is a smooth plane curve (z = 0):

$$K = \frac{|x'y'' - x''y'|}{\left[(x')^2 + (y')^2 \right]^{3/2}}$$

Curvature if **r** is the graph of a twice differentiable y = f(x):

$$K = \frac{|y''|}{\left[1 + (y')^2\right]^{3/2}}$$

Curvature if **r** has unit speed: $K = \|\mathbf{T}'\|$

Curvature if **r** is a smooth space curve: $K = \frac{\mathbf{a}_{N}}{v^{2}} = \frac{\|\mathbf{a} \times \mathbf{v}\|}{\|\mathbf{v}\|^{3}}$

Radius of curvature: $R = \frac{1}{K}$

Center of curvature is on the normal line to the concave side of the curve.

Tangential component of acceleration: $\mathbf{a}_{\mathbf{T}} = \mathbf{a} \bullet \mathbf{T} = \frac{\mathbf{a} \bullet \mathbf{v}}{\|\mathbf{v}\|} = v'(t)$

Normal component of acceleration: $\mathbf{a}_{\mathbf{N}} = \mathbf{a} \bullet \mathbf{N} = Kv^2 = \frac{\|\mathbf{a} \times \mathbf{v}\|}{\|\mathbf{v}\|} = \sqrt{\|\mathbf{a}\|^2 - \mathbf{a}_{\mathbf{T}}^2}$