
THREE GREAT THEOREMS OF VECTOR CALCULUS

Green’s Theorem: Let R be a connected plane region whose boundary is a
piecewise smooth simple closed curve C. If M and N are continuous with
continuous first partials in some open region of the plane containing R, thenI
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Stokes’s Theorem: Let f be a differentiable real-valued function defined on a
connected plane region R whose boundary is a piecewise smooth simple closed
curve. Let S be the graph of z = f (x, y) on domain R and let C be the boundary
of S. If M, N and P are continuous with continuous first partials on some open
region of space containing S, thenI
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where n denotes the upward unit normal∗ on S.

∗To find the upward unit normal n on S : z = f (x, y) , define g (x, y, z) =

z − f (x, y) so that S is a level surface for g. Then 5g =
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normal to S with positive z-component. Normalize to obtain
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Note that n dS = 5g dA.

Gauss’s Theorem: Let Q be a closed solid in space whose boundary is a closed
piecewise smooth surface S. If M, N and P are continuous with continuous first
partials on some open region of space containing Q, thenZZ
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where n denotes the outward unit normal on S.
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