Why Simply-Connected?

Math 311

Consider the vector field $\mathbf{F}(x,y) = \left\langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \right\rangle$. Let C_n be the unit circle parametrized by $x = \cos 2\pi t$ and $y = \sin 2\pi t$ with $0 \le t \le n$, where n is a positive integer. Note that C_n is a closed curve for each n since it begins and ends at (1,0); we call n the winding number of C_n since n is the number of times the particle tracing out C_n winds around the origin. Now

$$\int_{C_n} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{n} (-\sin 2\pi t) (-\sin 2\pi t \ dt) + (\cos 2\pi t) (\cos 2\pi t \ dt) = \int_{0}^{n} dt = n,$$

so different values of n give different values for the line integral. Thus the vector field \mathbf{F} fails to be conservative even though

$$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = \frac{(x^2 + y^2) - x(2x)}{(x^2 + y^2)^2} - \frac{(x^2 + y^2)(-1) - (-y)(2y)}{(x^2 + y^2)^2}$$
$$= \frac{x^2 + y^2 - 2x^2 + x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} = 0.$$

Theorem: If $\mathbf{F} = \langle M, N \rangle$ is defined on a simply-connected region R and the component functions M and N have continuous first partials in R, then $\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 0$ if and only if \mathbf{F} is conservative in R.

Here's why our observations above do not contradict this theorem: Since C_n encircles the origin, every simply-connected region R containing C_n contains the origin. But \mathbf{F} is undefined at the origin, so the hypotheses of the theorem are not satisfied for any simply-connected region R containing C_n and the conclusion that \mathbf{F} is conservative in R does not follow.